Skip to main content
Log in

Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT

  • Pediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT).

Methods

The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1–9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise.

Results

The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30–50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images.

Conclusion

Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality.

Key points

Iterative reconstruction helps lower radiation exposure levels in children undergoing CT.

Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution.

For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schauer DA, Linton OW (2009) NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, medical exposure—are we doing less with more, and is there a role for health physicists? Health Phys 97:1–5

    Article  CAS  PubMed  Google Scholar 

  2. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  3. Brenner DJ (2010) Should we be concerned about the rapid increase in CT usage? Rev Environ Health 25:63–68

    PubMed  Google Scholar 

  4. Mettler FA Jr, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253:520–531

    Article  PubMed  Google Scholar 

  5. Scanff P, Donadieu J, Pirard P, Aubert B (2008) Population exposure to ionizing radiation from medical examinations in France. Br J Radiol 81:204–213

    Article  CAS  PubMed  Google Scholar 

  6. Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353–359

    Article  PubMed  Google Scholar 

  7. Wall BF, Kendall GM, Edwards AA, Bouffler S, Muirhead CR, Meara JR (2006) What are the risks from medical X-rays and other low dose radiation? Br J Radiol 79:285–294

    Article  CAS  PubMed  Google Scholar 

  8. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    Article  CAS  PubMed  Google Scholar 

  9. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed Central  PubMed  Google Scholar 

  10. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A 100:13761–13766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. McCollough CH (2006) Standardization in CT terminology: a physicist's perspective. Radiology 241:661–662

    Article  PubMed  Google Scholar 

  12. McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512

    Article  PubMed  Google Scholar 

  13. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    Article  PubMed  Google Scholar 

  14. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 2):121–125

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rehani M (2007) Radiation dose optimisation in biomedical imaging and intervention. Biomed Imaging Interv J 3:e50

    PubMed Central  PubMed  Google Scholar 

  16. Rehani MM, Berry M (2000) Radiation doses in computed tomography. The increasing doses of radiation need to be controlled. BMJ 320:593–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vock P (2005) CT dose reduction in children. Eur Radiol 15:2330–2340

    Article  PubMed  Google Scholar 

  18. Paterson A, Frush DP (2007) Dose reduction in paediatric MDCT: general principles. Clin Radiol 62:507–517

    Article  CAS  PubMed  Google Scholar 

  19. Donnelly LF, Emery KH, Brody AS, Laor T, Gylys-Morin VM, Anton CG et al (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large Children's Hospital. AJR Am J Roentgenol 176:303–306

    Article  CAS  PubMed  Google Scholar 

  20. Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M (2002) A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol 75:140–150

    CAS  PubMed  Google Scholar 

  21. Singh S, Kalra MK, Thrall JH, Mahesh M (2012) Pointers for optimizing radiation dose in pediatric CT protocols. J Am Coll Radiol 9:77–79

    Article  PubMed  Google Scholar 

  22. Strauss KJ, Goske MJ, Kaste SC, Bulas D, Frush DP, Butler P et al (2010) Image gently: Ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol 194:868–873

    Article  PubMed  Google Scholar 

  23. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199

    Article  PubMed  Google Scholar 

  24. Qi LP, Li Y, Tang L, Li YL, Li XT, Cui Y et al (2012) Evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction with the same group of patients. Br J Radiol 85:e906–e911

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sagara Y, Hara AK, Pavlicek W, Silva AC, Paden RG, Wu Q (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–719

    Article  PubMed  Google Scholar 

  26. Singh S, Kalra MK, Gilman MD, Hsieh J, Pien HH, Digumarthy SR et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573

    Article  PubMed  Google Scholar 

  27. Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383

    Article  PubMed  Google Scholar 

  28. Singh S, Kalra MK, Sung MK, Back A, Blake MA (2012) Radiation dose reduction with application of non-linear adaptive filters for abdominal CT. World J Radiol 4:21–28

    Article  PubMed Central  PubMed  Google Scholar 

  29. Singh S, Kalra MK, Shenoy-Bhangle AS, Saini A, Gervais DA, Westra SJ et al (2012) Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology 263:537–546

    Article  PubMed  Google Scholar 

  30. Vorona GA, Ceschin RC, Clayton BL, Sutcavage T, Tadros SS, Panigrahy A (2011) Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study. Pediatr Radiol 41:1174–1182

    Article  PubMed  Google Scholar 

  31. Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J et al (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301

    Article  PubMed  Google Scholar 

  32. Mitsumori LM, Shuman WP, Busey JM, Kolokythas O, Koprowicz KM (2012) Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol 22:138–143

    Article  PubMed  Google Scholar 

  33. May MS, Wust W, Brand M, Stahl C, Allmendinger T, Schmidt B et al (2011) Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography. Invest Radiol 46:465–470

    Article  PubMed  Google Scholar 

  34. Lee SH, Kim MJ, Yoon CS, Lee MJ (2012) Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: An intra-individual comparison. Eur J Radiol 81:e938–e943

    Article  PubMed  Google Scholar 

  35. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108

    Article  PubMed  Google Scholar 

  36. Kijewski MF, Judy PF (1987) The noise power spectrum of CT images. Phys Med Biol 32:565–575

    Article  CAS  PubMed  Google Scholar 

  37. Baek J, Pelc NJ (2010) The noise power spectrum in CT with direct fan beam reconstruction. Med Phys 37:2074–2081

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mieville FA, Gudinchet F, Brunelle F, Bochud FO, Verdun FR (2013) Iterative reconstruction methods in two different MDCT scanners: Physical metrics and 4-alternative forced-choice detectability experiments—A phantom approach. Phys Med 29:99–110

    Article  PubMed  Google Scholar 

  39. Brisse HJ, Robilliard M, Savignoni A, Pierrat N, Gaboriaud G, De Rycke Y et al (2009) Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys 97:303–314

    Article  CAS  PubMed  Google Scholar 

  40. Papadakis AE, Perisinakis K, Damilakis J (2008) Automatic exposure control in pediatric and adult multidetector CT examinations: a phantom study on dose reduction and image quality. Med Phys 35:4567–4576

    Article  PubMed  Google Scholar 

  41. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193:764–771

    Article  PubMed  Google Scholar 

  42. Jean-Baptiste Thibault KS, Charles Bouman, and Jiang Hsieh. (June 29–July 4, 2003) High Quality Iterative Image Reconstruction for Multi-Slice Helical CT. International Conference on Fully 3D Reconstruction in Radiology and Nuclear Medicine. Saint Malo

  43. Zarb Francis LR, McEntee MF (2010) Developing optimized CT scan protocols: phantom measurements of image quality. Radiography 17:109–114

    Article  Google Scholar 

  44. Ghetti C, OO, Serreli G (2011) CT iterative reconstruction in image space: a phantom study. Phys Med: Eur J Med Phys 28:161–165

  45. Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153

    Article  PubMed  Google Scholar 

  46. Papadakis AE, Perisinakis K, Oikonomou I, Damilakis J (2011) Automatic exposure control in pediatric and adult computed tomography examinations: can we estimate organ and effective dose from mean MAS reduction? Invest Radiol 46:654–662

    Article  PubMed  Google Scholar 

  47. Brisse HJ, Madec L, Gaboriaud G, Lemoine T, Savignoni A, Neuenschwander S et al (2007) Automatic exposure control in multichannel CT with tube current modulation to achieve a constant level of image noise: experimental assessment on pediatric phantoms. Med Phys 34:3018–3033

    Article  PubMed  Google Scholar 

  48. Vorona GA, Zuccoli G, Sutcavage T, Clayton BL, Ceschin RC, Panigrahy A (2013) The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study. Am J Neuroradiol 34:205–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gay, F., Pavia, Y., Pierrat, N. et al. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT. Eur Radiol 24, 102–111 (2014). https://doi.org/10.1007/s00330-013-2982-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2982-z

Keywords

Navigation