Skip to main content

Advertisement

Log in

Identification assisted by molecular markers of larval parasites in two limpet species (Patellogastropoda: Nacella) inhabiting Antarctic and Magellan coastal systems

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the Southern Ocean, many parasites of vertebrates (mainly helminth groups) have been recognized as endemic species, but parasites of marine invertebrates remain almost unknown. It is reasonable to assume that digenean larvae will parasitize gastropods, bivalves, amphipods, and annelids, the usual first and second intermediate hosts for those parasites. Here, using an identification assisted by molecular markers, we report the Digenea species parasitizing the most abundant limpet species inhabiting ice-free rocky intertidal and subtidal zones of the Southern Ocean, viz. Nacella concinna from the Antarctic and Nacella deaurata from the Magellan region. The limpets harbored larval Digenea (two metacercariae and one sporocyst). Phylogenetic analysis based on the multilocus tree supported the hypothesis that N. concinna is parasitized by a species of Gymnophallidae, whereas the limpet N. deaurata is parasitized by Gymnophalloides nacellae and a species of Renicolidae. In addition, differences in prevalence and intensity were also recorded between the two compared host species and also from other congeneric species. This new knowledge in parasite species in marine invertebrates from the Southern Ocean reveals the presence of a particular parasite fauna and confirms the utility of molecular tools to identify biodiversity still scarcely known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bagnato E, Gilardoni C, Di Giorgio G, Cremonte F (2015) A checklist of marine larval trematodes (Digenea) in molluscs from Argentina, Southwestern Atlantic coast. Check List 11(4):1706

    Article  Google Scholar 

  • Barbosa A, Palacios MJ (2009) Health of Antarctic birds: a review of their parasites, pathogens and diseases. Polar Biol 32:1095–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartoli P (1974) Recherches sur les Gymnophallidae F. N. Morozov, (1955) (Digenea) Parasites d’oiseaux des côtes de Camargue: Systématique, biologie et ecologie. Thèse. Universite d’Aix-Marseille, Marseille, France

  • Blakeslee AM, Altman I, Miller AW, Byers JE, Hamer CE, Ruiz GM (2012) Parasites and invasions: a biogeographic examination of parasites and hosts in native and introduced ranges. J Biogeogr 39:609–622

    Article  Google Scholar 

  • Blasco-Costa I, Cutmore SC, Miller TL, Nolan MJ (2016) Molecular approaches to trematode systematics: ‘best practice’and implications for future study. Syst Parasitol 93:295–306

    Article  PubMed  Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol 10:e1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray RA, Gibson D, Jones A (2008) Keys to the Trematoda. CAB International and Natural History Museum, London

    Book  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  CAS  PubMed  Google Scholar 

  • Byers JE, Malek AJ, Quevillon LE, Altman I, Keogh CL (2015) Opposing selective pressures decouple pattern and process of parasitic infection over small spatial scale. Oikos 124:1511–1519

    Article  Google Scholar 

  • Cremonte F, Pina S, Gilardoni C, Rodrigues P, Chai JY, Ituarte C (2013) A new species of gymnophallid (Digenea) and an amended diagnosis of the genus Gymnophalloides Fujita, 1925. J Parasitol 99:85–92

    Article  PubMed  Google Scholar 

  • Criscione CD, Blouin MS (2004) Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution 58:198–202

    Article  PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    Article  CAS  PubMed  Google Scholar 

  • Diaz JI, Fusaro B, Vidal V, González-Acuña D, Costa ES, Dewar M, et al. (2017) Macroparasites in Antarctic penguins. In: Biodiversity and Evolution of Parasitic Life in the Southern Ocean, Springer, Switzerland, pp 183–204

  • Falk BG, Perkins SL (2013) Host specificity shapes population structure of pinworm parasites in Caribbean reptiles. Mol Ecol 22:4576–4590

    Article  PubMed  Google Scholar 

  • Froeschke G, von der Heyden S (2014) A review of molecular approaches for investigating patterns of coevolution in marine host–parasite relationships. Adv Parasit 84:209–252

    Article  Google Scholar 

  • Gibson DI, Jones A, Bray RA (2002) Keys to the Trematoda (Vol. 2). CAB International and Natural History Museum, London

  • Gilardoni C, Di Giorgio G, Bagnato E, Cremonte F (2018) Survey of trematodes in intertidal snails from Patagonia, Argentina: new larval forms and diversity assessment. J Helminthol 93:342–351

  • González-Wevar CA, Nakano T, Cañete JI, Poulin E (2011) Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic Province. Mol Ecol 20:1936–1951

    Article  PubMed  Google Scholar 

  • Hall KA, Cribb TH, Barker SC (1999) V4 region of small subunit rDNA indicates polyphyly of the Fellodistomidae (Digenea) which is supported by morphology and life-cycle data. Syst Parasitol 43:81–92

    Article  CAS  PubMed  Google Scholar 

  • Hassouna N, Mithot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Article  Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • Hudson P, Greenman J (1998) Competition mediated by parasites: biological and theoretical progress. Trends Ecol Evol 13:387–390

    Article  CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimpel S, Kuhn T, Mehlhorn H (eds) (2017) Biodiversity and evolution of parasitic life in the Southern Ocean. Springer, Switzerland

    Google Scholar 

  • Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115

    Article  CAS  PubMed  Google Scholar 

  • Loos-Frank B (1969) Zur Kenntnis der gymnophalliden Trematoden des Nordseeraumes. I. Die Alternativzyklen von Gymnophallus choledochus Odhner, 1900. Z. Parasitenkd 32:135–156

    CAS  PubMed  Google Scholar 

  • Loos-Frank B (1971) Zur Kenntnis der gymnophalliden Trematoden des Nordseeraumes. IV. Übersicht über die gymnophalliden Larven aus Mollusken der Gezeitenzone. Z. Parasitenkd 36:206–232

    Google Scholar 

  • López Z, Cardenas L, Runil F, González MT (2015) Contrasting definitive hosts as determinants of the genetic structure in a parasite with complex life cycle along the south-eastern Pacific. Mol Ecol 24:1060–1073

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie K (2017) The History of Antarctic Parasitological Research. Biodiversity and Evolution of Parasitic Life in the Southern Ocean. Springer, Switzerland, pp 13–31

    Chapter  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp 1–8

  • Morriconi E (1999) Reproductive biology of the limpet Nacella (P.) deaurata (Gmelin, 1791) in bahía Lapataia (Beagle Channel). Scientia Marina 63:417–426

    Article  Google Scholar 

  • Mouritsen KN, Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124:101–117

    Article  Google Scholar 

  • Muñoz G, López Z, Cardenas L (2013) Morphological and molecular analyses of larval trematodes in the intertidal bivalve Perumytilus purpuratus from central Chile. J Helminthol 87:356–363

    Article  CAS  PubMed  Google Scholar 

  • Oliva ME, Valdivia IM, Cardenas L, George-Nascimento M, González K, Guiñez R, Cuello D (2010) Molecular and experimental evidence refuse the life cycle of Proctoeces lintoni (Fellodistomidae) in Chile. Parasitol Res 106:737–740

    Article  PubMed  Google Scholar 

  • Peribañez MA, Ordovás L, Benito J, Benejam L, Gracia MJ, Rodellar C (2011) Prevalence and sequence comparison of Phyllodistomum folium from zebra mussel and from freshwater fish in the Ebro River. Parasitol Int 60:59–63

    Article  CAS  PubMed  Google Scholar 

  • Picken GB (1980) The distribution, growth, and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908). J Exp Mar Biol Ecol 42:71–85

    Article  Google Scholar 

  • Poulin R, Cribb TH (2002) Trematode life cycles: short is sweet? Trends Parasitol 18:176–183

    Article  PubMed  Google Scholar 

  • Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Institution, Washington D.C., p 216

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL https://www.R-project.org/. R Found. Stat. Comput. Vienna, Austria.

  • Rohde K (2005) Marine parasitology. CSIRO Publishing, Australia

    Book  Google Scholar 

  • Rosenfeld S, Marambio J, Ojeda J, Rodríguez JP, González-Wevar C, Gerard K et al (2018) Trophic ecology of two co-existing Sub-Antarctic limpets of the genus Nacella: spatio-temporal variation in food availability and diet composition of Nacella magellanica and N. deaurata. ZooKeys 738:1–25

    Article  Google Scholar 

  • Ríos C, Mutschke E (1999) Community structure of intertidal boulder-cobble fields in the Straits of Magellan, Chile. Sci Mar 63:193–201

  • Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I (2018) GenBank. Nucleic Acids Res 47:D94–D99

    Article  PubMed Central  Google Scholar 

  • Scholz T (2002) Family Gymnophallidae Odhner, 1905. In: Gibson DI, Jones A, Bray RA (eds) Keys to the Trematoda. CAB International and Natural History Museum, London, pp 245–251

    Chapter  Google Scholar 

  • Silvestro D, Michalak I (2012) RaxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Tkach VV, Littlewood DTJ, Olson PD, Kinsella JM, Swiderski Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst Parasitol 56:1–15

    Article  PubMed  Google Scholar 

  • Valdovinos C, Ruth M (2005) Nacellidae limpets of the southern end of South America: taxonomy and distribution. Rev Chil Hist Nat 78:497–517

    Article  Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371

    Article  CAS  PubMed  Google Scholar 

  • Zdzitowiecki K (1988) Occurrence of digenetic trematodes in fishes off South Shetlands (Antarctic). Acta Parasitol Pol 33:55–72

    Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Instituto Antártico Chileno through the Inach RT 02–15 Grant, the National Commission of Scientific and Technological Investigation of Chile through the Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP) programme research center: Dynamics of High Latitude Marine Ecosystems (grant no. 15150003), and FONDECYT (postdoctoral grant no. 3180331 to C.P.M.-R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cárdenas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, K., López, Z., Levicoy, D. et al. Identification assisted by molecular markers of larval parasites in two limpet species (Patellogastropoda: Nacella) inhabiting Antarctic and Magellan coastal systems. Polar Biol 42, 1175–1182 (2019). https://doi.org/10.1007/s00300-019-02511-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02511-6

Keywords

Navigation