Skip to main content

Advertisement

Log in

Diversity of mycelial fungi in natural and human-affected Antarctic soils

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Environmental disturbance is an unpreventable consequence of human impact after exploration and research station management in Antarctica. Environmental pollution may directly influence Antarctic mycobiota. However, information about the effect of anthropogenic factors on microscopic fungi at extremely low temperatures is insufficient. This work compared the abundance and the species diversity of mycelial fungi from soils of six Russian research Antarctic stations—Bellingshausen, Progress-2, Druzhnaya-4, Molodezhnaya, Novolazarevskaya and Oasis−affected by various anthropogenic impacts (operation of tracked and wheeled vehicles, storage and use of petroleum products and petroleum leakage sites) with that from their background analogues. New data were obtained on the taxonomic diversity of mycelial fungi from Antarctic soils with different anthropogenic loads. Cultural, morphological and physiological studies of 142 isolated strains of mycelial fungi were supplemented by molecular–biological research into sterile mycelium strains and those with vague morphological characters. This contributed not only to the verification but also to a significant increase in the number of taxa of mycelial fungi isolated from low-temperature ecotopes. Leotiomycetes and Dothideomycetes were found to be the most dominant classes in the studied samples. It was shown that several ecological groups of micromycetes could be isolated among the mycobiota of the investigated habitats, the abundance and species composition of which changed differently under the influence of anthropogenic factors. The current results highlight that microbiota changes in human-affected soils can serve as an indicator of the state of low-temperature ecotopes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arefyev SP (2000) Mycoindication of the forest ecosystems state in Yamal. In: Arefyev SP, Gashev SN, Sharapova TA, Fattakhov RG, Stepanova VB (eds) Environmental nature of Yamal, 3rd edn. Institute of Northern Development, Siberian Division of the Russian Academy of Sciences, Tyumen, pp 96–116 (in Russian)

    Google Scholar 

  • Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 35–53. https://link.springer.com/chapter/10.1007/978-3-642-45213-0_3

  • Ban YH, Tang M, Chen H, Xu ZY, Zhang HH, Yang YR (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS ONE. 7:e47968. https://doi.org/10.1371/journal.pone.0047968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnet HL, Hunter BB (1972) Illustrated genera of imperfect fungi, 3rd edn. Burgess, Minneapolis

    Google Scholar 

  • Bayazitova AA, Glushko NI, Lisovskaya SA, Khaldeeva EV, Parshakov VR, Ilyinskaya ON (2015) Effect of heavy metals on the sensitivity of clinical strains of Aspergillus niger to antimycotics. Adv Med Mycol (Moscow) 14:331–333 (in Russian)

    Google Scholar 

  • Bissett J (1984) A revision on the genus Trichoderma. Can J Bot 62:924–931. https://doi.org/10.1139/b84-131

    Article  Google Scholar 

  • Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual: differentiation of specific and infra-specific taxa in culture. CABI, Wallingford

    Book  Google Scholar 

  • Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, Calogero R, Crisafi F, Varese GC (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318. https://doi.org/10.1016/j.scitotenv.2016.10.064

    Article  CAS  PubMed  Google Scholar 

  • Camacho A, Rochera C, Hennebelle R, Ferrari C, Quesada A (2015) Total mercury and methyl-mercury contents and accumulation in polar microbial mats. Sci Total Environ 509–510:145–153. https://doi.org/10.1016/j.scitotenv.2014.09.012

    Article  CAS  PubMed  Google Scholar 

  • Carmichael JW, Kendrick WB, Conners IL, Sigler L (1980) Genera of hyphomycetes. University of Alberta Press, Canada

    Google Scholar 

  • Cox F, Newsham KK, Bol R, Dungait JAJ, Robinson C (2016) Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol Lett 19:528–536. https://doi.org/10.1111/ele.12587

    Article  PubMed  Google Scholar 

  • Crous PW, Braun U, Schubert K, Groenewald JZ (2007) The genus Cladosporium and similar dematiaceous Hyphomycetes. Stud Mycol 58:1–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Diederich P (2010) Fusicladium peltigericola Crous & Diederich, sp. nov. Persoonia (Fungal Planet) 25:128–129

    Google Scholar 

  • de Hoog GS (1977) Rhinocladiella and allied genera. Stud Mycol 15:1–140

    Google Scholar 

  • de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • de Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov., an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie Leeuwenhoek 90:257–268. https://doi.org/10.1007/s10482-006-9080-z

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Li L, Che Q, Li D, Gu Q, Zhu T (2016) Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20:425–435. https://doi.org/10.1007/s00792-016-0833-y

    Article  CAS  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi. IHW, Eching

    Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Evdokimova G, Masloboev V, Mozgova N, Myazin V, Fokina N (2012) Bioremediation of oil-polluted cultivated soils in the Euro-Arctic Region. J Environ Sci Eng A1:1130–1136

    Google Scholar 

  • Fernandez PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, MacCormack WP (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21:445–457. https://doi.org/10.1007/s00792-017-0915-5

    Article  CAS  PubMed  Google Scholar 

  • Gams W (2000) Phialophora and some similar morphologically little differentiated anamorphs of divergent ascomycetes. Stud Mycol 45:187–199

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Halle B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology. Astrobiology 2:275–311. https://doi.org/10.1089/ast.2006.0012

    Article  CAS  Google Scholar 

  • Gostinčar C, Ohm R, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potentials, stress tolerance, and description of new species. BMC Genomics 15:1–28. https://doi.org/10.1186/1471-2164-15-549

    Article  CAS  Google Scholar 

  • de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102:1066–1081. https://doi.org/10.3852/09-240

    Article  PubMed  Google Scholar 

  • Hermanides-Nijhof EJ (1977) Aureobasidium and allied genera. Stud Mycol 15:141–177

    Google Scholar 

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldu FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. https://doi.org/10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  • Kartal SN, Katsumata N, Imamura Y (2006) Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. Forest Prod J 56:33–37

    CAS  Google Scholar 

  • Kirtsideli IYu, Abakumov EV, Teshebaev ShB, Zelenskaya MS, Vlasov DYu, Krylenkov VA, Ryabusheva YuV, Sokolov VT, Barantsevich EP (2016) Microbial communities in regions of Arctic settlements. Hyg & Sanit (Russian Journal) 95:923–929 (in Russian)

    Google Scholar 

  • Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R (2012) A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 157:304–314. https://doi.org/10.1016/j.jbiotec.2011.11.021

    Article  CAS  PubMed  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbur voor Schimmelcult, Utrecht

    Google Scholar 

  • Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskii DA, Ozerskaya SM (2007) Halo- and psychrotolerant Geomyces fungi from Arctic cryopegs and marine deposits. Microbiology (Moscow) 76:31–38. https://doi.org/10.1134/S0026261707010055

    Article  CAS  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EY, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of longterm natural cryopreservation. Microbiology (Moscow) 70:356–364. https://doi.org/10.1023/A:1010419831245

    Article  CAS  Google Scholar 

  • Kochkina G, Ivanushkina N, Ozerskaya S, Chigineva N, Vasilenko O, Firsov S, Spirina E, Gilichinsky D (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509. https://doi.org/10.1111/j.1574-6941.2012.01442.x

    Article  CAS  PubMed  Google Scholar 

  • Kochkina GA, Ozerskaya SM, Ivanushkina NE, Chigineva NI, Vasilenko OV, Spirina EV, Gilichinskii DA (2014) Fungal diversity in the Antarctic active layer. Microbiology (Moscow) 83:94–101. https://doi.org/10.1134/S002626171402012X

    Article  CAS  Google Scholar 

  • Korneikova MV, Evdokimova GA, Lebedeva EV (2011) The complexes of microscopic fungi in cultivated soils polluted by oil products on the north of Kola peninsula. Mykol Phytopatol 45:249–256 (in Russian)

    CAS  Google Scholar 

  • Kosolapov DA (2009) The structure of the biota of aphyllophoroid fungi in the preserve “Belyi” (Komi Republic). Vestnik of the Institute of Biology, Komi scientific center, Ural branch of the Russian Academy of Sciences 11:2–4 (in Russian)

    Google Scholar 

  • Leelaruji W, Piamtongkam R, Chulalaksananukul S, Chulalaksananukul W (2013) Biodiesel production from Jatropha curcas oil catalysed by whole cells of Aureobasidium pullulans var. melanogenum SRY 14–3. Afr J Biotechnol 12:4380–4386. https://doi.org/10.5897/AJB2013.12469

    Article  CAS  Google Scholar 

  • Leitao AN (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417. https://doi.org/10.3390/ijerph6041393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugauskas A, Mikulskienė A, Šliaužienė D (1987) Catalogue of the fungi deteriorating polymeric materials. Nauka, Moscow (in Russian)

    Google Scholar 

  • Makhalanyane TP, Van Goethem MW, Cowan DA (2016) Microbial diversity and functional capacity in polar soils. Curr Opin Biotechnol 38:159–166. https://doi.org/10.1016/j.copbio.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  • Moghimi H, Heidarytabar R Hamedi J (2016) Evaluation of crude oil biodegradation by Phaeosphaeria sp. UTMC 5003. Iran J Med Microbiol 9(4):63–72

  • Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Change 6:182–186. https://doi.org/10.1038/nclimate2806

    Article  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Tosi S, Fenice M, Barreca D, Ruisi S (2005) Studies on Antarctic fungi. Polarnet Tech Rep 1:49–52

    Google Scholar 

  • Panin AL, Sboychakov VB, Belov AB, Kraeva LA, Vlasov DYu, Goncharov AE (2016) Natural and technogenic focality of infectious diseases in the territory of Antarctic settlements. Biol Bull Rev 6:320–332. https://doi.org/10.1134/S2079086416040034

    Article  Google Scholar 

  • Pitt JI (1979) The Genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, London

    Google Scholar 

  • Samson RA (1974) Paecilomyces and some allied hyphomycetes. Stud Mycol 6:1–119

    Google Scholar 

  • Samson RA, Frisvad JC (2004) Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Stud Mycol 49:1–251

    Google Scholar 

  • Samson RA, Houbraken J (2011) Phylogenetic and taxonomic studies on the genera Penicillium and Talaromyces. Stud Mycol 70:1–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Schol-Schwarz MB (1970) Revision of the genus Phialophora (Moniliales). Persoonia 6:59–94

    Google Scholar 

  • Schubert K, Ritschel A, Braun U (2003) A monograph of Fusicladium s.lat. (Hyphomycetes). Schlechtendalia 9:1–132

    Google Scholar 

  • Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS KNAW Biodiversity Center, Utrecht

    Google Scholar 

  • Semenov SM (1990) Laboratory media for actinomycetes and fungi. Manual, Agropromizdat, Moscow (in Russian)

    Google Scholar 

  • Shchelchkova MV, Struchkova LK (2010) Parameters of microorganisms numerosity in diagnostics of cryosolic black earth pollution by heavy metals. Izvestia of Samara scientific center of the Russian Academy of Sciences 12:1090–1092 (in Russian)

    Google Scholar 

  • Shigapov AM (2016) Bioremediation of oil-contaminated soils with organic components of forestry waste (on the example of sod-podzolic soils of the Urals Federal District of Russia). Dissertation, Ural State University of Railway Transport, Ekaterinburg (in Russian)

  • Slemmons C, Johnson G, Connel LB (2013) Application of an automated ribosomal intergenic spacer analysis database for identification of cultured Antarctic fungi. Antarct Sci 25:44–50. https://doi.org/10.1017/S0954102012000879

    Article  Google Scholar 

  • Sogonov MV, Schroers H-J, Gams W (2005) The hyphomycete Teberdinia hygrophila gen. nov. sp. nov. and related anamorphs of Pseudeurotium species. Mycologia 97:695–709. https://doi.org/10.1080/15572536.2006.11832799

    Article  CAS  PubMed  Google Scholar 

  • Staniec B, Pietrykowska-Tudruj E, Czepiel-Mil K (2016) Larva of Gyrophaena boleti (Linnaeus, 1758) (Coleoptera: Staphylinidae) – an obligatory saproxylic and mycophagous species associated with Fomitopsis pinicola: notes on tergal gland system and behaviour. Ann Zool 66:83–100. https://doi.org/10.3161/00034541ANZ2016.66.1.006

    Article  Google Scholar 

  • Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434. https://doi.org/10.1080/10643380902945706

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dorst J, Benaud N,Ferrari, B (2017) New insights into the microbial diversity of polar desert soils: a biotechnological perspective. In: Chénard C, Lauro FM (eds) Microbial ecology of extreme environments. Ch. 7. Springer, Berlin, pp 169–183. https://doi.org/10.1007/978-3-319-51686-8_7

  • van Oorschot CAN (1980) A revision of Chrysosporium and allied genera. Stud Mycol 20:1–89

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757. https://doi.org/10.1007/s00300-011-1119-6

    Article  Google Scholar 

  • Zvyagintsev DG, Kurakov AV, Umarov MM, Philip Z (1997) Microbiological and biochemical indicators of lead pollution in soddy-podzolic soil. Eurasian Soil Sci (Moscow) 30:1003–1009

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, projects no. 15-29-02629-ofi_m and no. 16-04-01050-a. We thank the editor Dieter Piepenburg and the reviewers for the excellent contributions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kochkina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochkina, G.A., Ivanushkina, N.E., Lupachev, A.V. et al. Diversity of mycelial fungi in natural and human-affected Antarctic soils. Polar Biol 42, 47–64 (2019). https://doi.org/10.1007/s00300-018-2398-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2398-y

Keywords

Navigation