Skip to main content
Log in

Copepod feeding strategies in the epipelagic to bathypelagic zone of Prydz Bay, Antarctica: an assessment through fatty acids and stable isotopes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Information on the feeding strategies and dietary preferences of copepods from epipelagic to bathypelagic zones of the Southern Ocean are important for understanding the role of zooplankton in carbon and energy transfers through the food web. Using fatty acids (FA) and stable isotopic biomarkers, the present study investigated the feeding strategies and trophic niches of seven dominant copepod species (Calanoides acutus, Calanus propinquus, Metridia gerlachei, Rhincalanus gigas, Paraeuchaeta antarctica, Aetideopsis minor and Bathycalanus richardi) collected from various water strata of Prydz Bay, Antarctica during the austral summer of 2013. Copepods showed species-specific and depth-related differences in FA biomarkers and stable isotopic values. C. acutus and C. propinquus had the largest content of long-chain monounsaturated FA, while M. gerlachei had the smallest FA content (approximately 40 mg g−1 dry weight) and the highest 18:1n-9. FA of R. gigas were dominated by short- and medium-length carbon chains. The species P. antarctica and meso- and bathypelagic species A. minor and B. richardi showed relatively higher levels of carnivorous FA ratios and δ15N values. Higher δ15N values in M. gerlachei and P. antarctica dwelled in the mesopelagic and bathypelagic zone indicated the high diversity of feeding strategies of these copepods responding to the changing food availability. The flexible feeding strategies of copepods could enable them to utilise different ecological niches and minimise inter- and intra-specific competition in the Prydz Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson A (1994) Diets and feeding selectivity among the epipelagic copepod community near South Georgia in summer. Polar Biol 14:551–560

    Article  Google Scholar 

  • Belcher A, Manno C, Ward P, Henson SA, Sanders R, Tarling GA (2017) Copepod faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring. Biogeosciences 14:1511–1525

    Article  CAS  Google Scholar 

  • Bradford-Grieve JM, Blanco-Bercial L, Boxshall GA (2017) Revision of family Megacalanidae (Copepoda:Calanoida). Zootaxa 4229:1–183

    Article  Google Scholar 

  • Cavan EL, Henson SA, Belcher A, Sanders R (2017) Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences 14:177–186

    Article  CAS  Google Scholar 

  • Connelly TL, Deibel D, Parrish CC (2014) Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: combining bulk stable isotope and fatty acid signatures. Prog Oceanogr 120:79–92

    Article  Google Scholar 

  • Couturier LIE, Rohner CA, Richardson AJ, Marshall AD, Jaine FRA, Bennett MB, Townsend KA, Weeks SJ, Nichols PD (2013) Stable isotope and signature fatty acid analysis suggest reef manta rays feed on demersal zooplankton. PLoS ONE 8:e77152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • Falk-Petersen S, Sargent JR, Lonne OJ, Timofeev S (1999) Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biol 21:37–47

    Article  Google Scholar 

  • Graeve M, Hagen W, Kattner G (1994) Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep-Sea Res I 41:915–924

    Article  Google Scholar 

  • Guilini K, Veit-Kohler G, Troch MD, Van Gansbeke D, Vanreusel A (2013) Latitudinal and temporal variability in the community structure and fatty acid composition of deep-sea nematodes in the Southern Ocean. Prog Oceanogr 110:80–92

    Article  Google Scholar 

  • Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104:313–326

    Article  PubMed  CAS  Google Scholar 

  • Hagen W, Kattner G, Graeve M (1993) Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage via wax esters or triacylglycerols. Mar Ecol Prog Ser 97:135–142

    Article  CAS  Google Scholar 

  • Hagen W, Kattner G, Graeve M (1995) On the lipid biochemistry of polar copepods: compositional differences in the Antarctic calanoids Euchaeta antarctica and Euchirella rostromagna. Mar Biol 123:451–457

    Article  CAS  Google Scholar 

  • Hannides CCS, Popp BN, Choy CA, Drazen JC (2013) Midwater zooplankton and suspended particle dynamics in the north Pacific Subtropical Gyre: a stable isotope perspective. Limnol Oceanogr 58:1931–1946

    Article  CAS  Google Scholar 

  • Harding GCH (1994) The food of deep-sea copepods. J Mar Biol Assoc UK 54:141–155

    Article  Google Scholar 

  • Ikeda T, Sano F, Yamaguchi A, Matsuishi T (2006) Metabolism of mesopelagic and bathypelagic copepods in the western North Pacific Ocean. Mar Ecol Prog Ser 322:199–211

    Article  CAS  Google Scholar 

  • Ikeda T, Sano F, Yamaguchi A, Matsuishi T (2007) RNA:DNA ratios of calanoid copepods from the epipelagic through abyssopelagic zones of the North Pacific Ocean. Aquat Biol 1:99–108

    Article  CAS  Google Scholar 

  • Kattner G, Graeve M, Hagen W (1994) Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar Biol 118:637–644

    Article  CAS  Google Scholar 

  • Kattner G, Albers C, Graeve M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671

    Article  Google Scholar 

  • Kattner G, Hagen W, Lee RF, Campbell R, Deibei D, Falk-Petersen S, Graeve M, Hansen BW, Hirche HJ, Jonasdottir SH, Madsen ML, Mayzaud P, Muller-Navarra D, Nichols PD, Paffenhofer GA, Pond D, Saito H, Stubing D, Virtue P (2007) Perspectives on marine zooplankton lipids. Can J Fish Aquat Sci 64:1628–1639

    Article  CAS  Google Scholar 

  • Kattner G, Graeve M, Hagen W (2012) Energy reserves of Southern Ocean copepods: tracylglycerols with usually long-chain monounsaturated fatty acids. Mar Chem 138–139:7–12

    Article  CAS  Google Scholar 

  • Ko AR, Yang EJ, Kim MS, Ju SJ (2016) Trophodynamics of euphausiids in the Amundsen Sea during the austral summer by fatty acid and stable istopic signatures. Deep-Sea Res II 123:78–85

    Article  CAS  Google Scholar 

  • Kohlbach D, Graeve M, Lange BA, David C, Peeken I, Flores H (2016) The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analyses. Limnol Oceanogr 61:2027–2044

    Article  CAS  Google Scholar 

  • Koppelmann R, Weikert H, Lahajnar N (2003) Vertical distribution of mesozooplankton and its δ15N signature at a deep-sea site in the Levantine Sea (eastern Mediterranean) in April 1999. J Geophys Res. https://doi.org/10.1029/2002JC001351

    Article  Google Scholar 

  • Kosobokova KN, Hopcroft RR (2010) Diversity and vertical distribution of mesozooplankton in the Arctic’s Canada Basin. Deep-Sea Res II 57:96–110

    Article  Google Scholar 

  • Laakmann S, Auel H (2010) Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean. Mar Biol 157:463–471

    Article  Google Scholar 

  • Laakmann S, Stumpp M, Auel H (2009a) Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae; Calanoida) in the vicinity of the Antarctic polar front. Polar Biol 32:679–689

    Article  Google Scholar 

  • Laakmann S, Kochzius M, Auel H (2009b) Ecological niches of Arctic deep-sea copepods: vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition. Deep-Sea Res I 56:741–756

    Article  Google Scholar 

  • Lee RF, Hagen W, Kattner G (2006) Lipids storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  • Li CL, Sun S, Zhang GT, Ji P (2001) Summer feeding activities of zooplankton in Prydz Bay, Antarctica. Polar Biol 24:892–900

    Article  Google Scholar 

  • Mayzaud P, Pakhomov EA (2014) The role of zooplankton communities in carbon recycling in the ocean:the case of the Southern Ocean. J Plankton Res 36:1543–1556

    Article  Google Scholar 

  • Michels J, Schnack-Schiel SB (2005) Feeding in dominant Antarctic copepods—does the morphology of the mandibular gnathobases relate to diet? Mar Biol 146:483–495

    Article  Google Scholar 

  • Minutoli R, Granata A, Brugnano C, Zagami G, Guglielmo L (2014) Mesozooplankton carbon requirement in the southern Adriatic Sea: vertical distribution, diel and seasonal variability, relation to particle flux. Mar Ecol Prog Ser 495:91–104

    Article  CAS  Google Scholar 

  • Minutoli R, Brugnano C, Granata A, Zagami G, Guglielmo L (2017) Zooplankton electron transport system activity and biomass in the western Ross Sea (Antarctica) during austral summer 2014. Polar Biol 40:1197–1209

    Article  Google Scholar 

  • Olsen EM, Jorstad T, Kaartvedt S (2000) The feeding strategies of two large marine copepods. J Plankton Res 22:1513–1528

    Article  Google Scholar 

  • Pasternak AF, Schnack-Schiel SB (2001) Seasonal feeding patterns of the dominant Antarctic copepods Calanus propinquus and Calanoides acutus in the Weddell Sea. Polar Biol 24:771–784

    Article  Google Scholar 

  • Reuss N, Poulsen LK (2002) Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar Biol 141:423–434

    Article  CAS  Google Scholar 

  • Schukat K, Auel H, Teuber L, Lahajnar N, Hagen W (2014) Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J Sea Res 85:186–196

    Article  Google Scholar 

  • Steinberg DK, Landry MR (2017) Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci 9:413–444

    Article  Google Scholar 

  • Takahashi KT, Ojima M, Tanimura A, Odate T, Fukuchi M (2017) The vertical distribution and abundance of copepod nauplii and other micro- and mesozooplankton in the seasonal ice zone of Lutzow-Holm Bay during austral summer 2009. Polar Biol 40:79–93

    Article  Google Scholar 

  • Teuber L, Schukat A, Hagen W, Auel H (2014) Trophic interactions and life strategies of epi- to bathypelagic calanoid copepods in the tropical Atlantic Ocean. J Plankton Res 36:1109–1123

    Article  CAS  Google Scholar 

  • Wang SW, Budge SM, Iken K, Gradinger RR, Springer AM, Wooller MJ (2015) Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analysis. Mar Ecol Prog Ser 518:31–50

    Article  CAS  Google Scholar 

  • Ward P, Shreeve RS, Cripps GC (1996) Rhincalanus gigas and Calanus simillimus: lipid storage patterns of two species of copepod in the seasonally ice-free zone of the Southern Ocean. J Plankton Res 18:1439–1454

    Article  Google Scholar 

  • Ward P, Tarling GA, Thorpe SE (2014) Mesozooplankton in the Southern Ocean:spatial and temporal patterns from discovery investigations. Prog Oceanogr 120:305–319

    Article  Google Scholar 

  • Werner I, Auel H (2005) Seasonal variability in abundance, respiration and lipid composition of Arctic under-ice amphipods. Mar Ecol Prog Ser 292:251–262

    Article  Google Scholar 

  • Yang G, Li CL, Sun S, Zhang C, He Q (2013) Feeding of dominant zooplankton in Prydz Bay, Antarctica, during austral spring/summer: food availability and species responses. Polar Biol 36:1701–1707

    Article  Google Scholar 

  • Yang G, Li CL, Guilini K, Peng QC, Wang YQ, Zhang Y, Zhang YS (2016) Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: insights from a combined fatty acid biomarker and stable isotopic approach. Deep-Sea Res I 114:55–63

    Article  CAS  Google Scholar 

  • Yang G, Li CL, Wang YQ, Zhang Y (2017) Vertical profiles of zooplankton community structure in Prydz Bay, Antarctica, during the austral summer of 2012/2013. Polar Biol 40:1101–1114

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the crew on the RV “Xuelong” for their assistance in the field. We are grateful to the Polar Biology Repository of the Marine Biological Museum of the Chinese Academy of Sciences (MBMCAS) for providing samples. This work is supported by Polar Project of State Oceanic Administration, China (CHINARE2017-01-05-02, 2017-03, and CHINARE2017-04-01-05) and the Aoshan Science and Technology Innovation Program, China (2015ASKJ02-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolun Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Li, C., Wang, Y. et al. Copepod feeding strategies in the epipelagic to bathypelagic zone of Prydz Bay, Antarctica: an assessment through fatty acids and stable isotopes. Polar Biol 41, 1307–1317 (2018). https://doi.org/10.1007/s00300-018-2286-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2286-5

Keywords

Navigation