Skip to main content

Advertisement

Log in

Behavioural responses of Antarctic krill (Euphausia superba) to CO2-induced ocean acidification: would krill really notice?

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Southern Ocean is expected to be significantly affected by future ocean acidification. Antarctic krill (Euphausia superba) is the key species of the Southern Ocean ecosystem. Understanding their behavioural responses to acidification is critical for assessing the impacts of ocean acidification on the ecosystem. Adult Antarctic krill reared in different holding tanks with various CO2 levels for 6 months prior to the experiments were tested for their behavioural responses to different carbon dioxide partial pressures (pCO2) (400, 1000, 1500, 2000, and 4000 μatm pCO2) in a two-channel flume. The time krill occupied either of the flume channels (with high or ambient CO2 levels) was highly variable in all tests. In most cases no significant preference to either side of the flume was found. The krill did not display any systematic discrimination to the sea water with different CO2 levels regardless of the CO2 levels that krill were acclimated for in the 6 months prior to the experiment. Poor ability to discriminate high CO2 waters may have an important implication to their life history in the future as ocean acidification rapidly progresses in parts of Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Atkinson A, Siegel V, Pakhomov E, Rothry P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  PubMed  Google Scholar 

  • Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348

    Article  CAS  PubMed  Google Scholar 

  • Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean acidification in zooplankton? Glob Change Biol 20:3377–3385

    Article  Google Scholar 

  • Ferrari MCO, Munday PL, Rummer JL, McCormick MI, Corkill K, Watson S, Allan BJM, Meekan MG, Chivers DP (2015) Interactive effects of ocean acidification and rising sea temperatures alter predation rat and predator selectivity in reef fish communities. Glob Change Biol 21:1848–1855

    Article  Google Scholar 

  • Hamner WG, Hamner PP, Strand SW, Gilmer RW (1983) Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling, and molting. Science 220:433–435

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi S, King R, Mijers R, Osborn JE, Swadling KM, Ritz DA, Nicol S (2010) An experimental aquarium for observing the schooling behaviour of Antarctic krill (Euphausia superb). Deep-Sea Res II 57:683–692

    Article  Google Scholar 

  • Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson JP, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A (2011) Will krill fare well under Southern Ocean acidification? Biol Lett 7:288–291

    Article  PubMed  Google Scholar 

  • Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Change 3:843–847

    Article  CAS  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS (2013) Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc Natl Acad Sci USA 110(51):4960–4967

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders JM, Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  CAS  Google Scholar 

  • Munday PL, Dixson DL, Donelson JM, Joes GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106(6):1848–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munday PL, Dixson DL, McCormick MI, Meekab M, Ferrari MCO, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level resonses. Glob Change Biol 22:974–989

    Article  Google Scholar 

  • Nicol S, Bowie A, Jarman SN, Lannuzel D, Meiners KM, Van Der Merwe P (2010) Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish 11:203–209

    Article  Google Scholar 

  • Perissinotto R, Pakhomov EA, McQuaid CD, Froneman PW (1997) In situ grazing rates and daily ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the Marginal Ice Zone. Mar Ecol Prog Ser 160:77–91

    Article  Google Scholar 

  • Portner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Quetin L, Ross RM (1984) Depth distribution of developing Euphausia superba embryos, predicted from sinking rates. Mar Biol 79:47–53

    Article  Google Scholar 

  • Ratnarajah L, Nicol S, Kawaguchi S, Townsend AT, Lannuzel D, Meiners KM, Bowie AR (2016) Understanding the variability in the iron concentration of Antarctic krill. Limnol Oceanogr 61(5):1651–1660

    Article  CAS  Google Scholar 

  • Saba GK, Schofield O, Torres JJ, Ombres EH, Steinberg DK (2012) Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia sperba, exposed to enhanced carbon dioxide (CO2). PLoS ONE 7:1–12

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay MCM, Pond DW, Tarling GA, Klevjer TA, Allen CS, Nicol S, Achterberg EP (2011) Seabed foraging by Antarctic krill: impactions for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol Oceanogr 56:1411–1428

    Article  CAS  Google Scholar 

  • Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strand SW, Hamner WM (1990) Schooling behavior of Antarctic krill (Euphausia superba) in laboratory aquaria: reactions to chemical and visual stimuli. Mar Biol 106:355–359

    Article  Google Scholar 

  • Tovar-Sanchez A, Duarte CM, Hernandez-Leon S, Sanudo-Wilhelmy SA (2007) Krill as a central node for iron cycling in the Southern Ocean. Geophys Res Lett 34:L11601

    Article  Google Scholar 

  • Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86:640–657

    Article  PubMed  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Whitehouse MJ, Atkinson A, Rees AP (2011) Close coupling between ammonium uptake by phytoplankton and excretion by Antarctic krill, Euphausia superba. Deep-Sea Res I 58:725–732

    Article  CAS  Google Scholar 

  • Wittmann AC, Portner HO (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Change 3:995–1001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ashley Cooper, Tasha Waller and Blair Smith for their help during the experiment. This research was supported by Australian Antarctic Science Project #4037 “Experimental krill biology: Response of krill to environmental change”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Kawaguchi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., King, R.A. & Kawaguchi, S. Behavioural responses of Antarctic krill (Euphausia superba) to CO2-induced ocean acidification: would krill really notice?. Polar Biol 41, 727–732 (2018). https://doi.org/10.1007/s00300-017-2233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2233-x

Keywords

Navigation