Skip to main content

Advertisement

Log in

Distribution and abundance of mesozooplankton in the Ross Sea, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Zooplankton (meso- and macrozooplankton) distributions and biomass are poorly known in the Ross Sea despite their importance in energy transfer within food webs and biogeochemical cycles. Mesozooplankton abundance and biomass on the continental shelf are spatially variable and span two orders of magnitude during austral summer. Selected sub-regions (near the shelf break or ice shelf) show similar variability, suggesting that other processes, either oceanographic or biological, influence zooplankton on smaller scales. Biomass at one location (76.5° S, 172° E) was consistently elevated throughout January, although the causes of this “hotspot” were unclear. At a station near the ice shelf, abundance and biomass of the pteropod Limacina antarctica was very high. Zooplankton biomass at this location was sevenfold greater than any other station, and while the high biomass was driven by pteropod contributions, copepods were also abundant. Copepods dominated the mesozooplankton composition at all other stations, comprising 90 and 78% on average of the total abundance and biomass. Zooplankton biomass comprised on average 3.96% of the total particulate carbon (0–200 m) and was weakly correlated with chlorophyll and biogenic silica. We suggest that summer zooplankton growth and biomass, while linked to organic matter concentrations, are regulated by other factors (e.g., predation by crystal krill and Antarctic silverfish), as both grazers may be responsible for significant losses. Our data indicate that, contrary to other suggestions, summer zooplankton biomass and abundance in the Ross Sea are similar to those in other Antarctic coastal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainley DG (2007) Insights from study of the last intact neritic marine ecosystem. Trends Ecol Evol 22:444–445

    Article  PubMed  Google Scholar 

  • Ainley DG, Ballard G, Dugger KM (2006) Competition among penguins and cetaceans reveals trophic cascades in the Ross Sea, Antarctica. Ecology 87:2080–2093

    Article  PubMed  Google Scholar 

  • Ainley DG, Ballard G, Blight LK, Ackley S, Emslie SD et al (2010) Impacts of cetaceans on the structure of southern ocean food webs. Mar Mamm Sci 26:482–489

    Article  Google Scholar 

  • Ainley DG, Ballard G, Jones RM, Jongsomjit D, Pierce SD, Smith WO Jr, Veloz S (2015) Trophic cascades in the western Ross Sea, Antarctica: revisited. Mar Ecol Prog Ser 534:1–16

    Article  Google Scholar 

  • Ashjian C, Rosenwaks GA, Wiebe PH, Davis CS, Gallager SM, Copley NJ, Lawson GL, Alatalo P (2004) Distribution of zooplankton on the continental shelf off Marguerite Bay, Antarctic Peninsula, during austral fall and winter, 2001. Deep Sea Res II 51:2073–2098

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov EA, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  PubMed  Google Scholar 

  • Atkinson A, Ward P, Hunt EPV, Pakhomov EA (2012) An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. CCAMLR Sci 19:171–218

    Google Scholar 

  • Ballard G, Jongsomjit D, Veloz SD, Ainley DG (2011) Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area. Biol Cons. doi:10.1016/j.biocon.2011.11.017

    Google Scholar 

  • Comeau S, Ross J, Teyssié J-L, Gattuso J-P (2010) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One. doi:10.1371/journal.pone.0011362

    PubMed  PubMed Central  Google Scholar 

  • Davis CS, Gallager SM, Marra M, Stewart WK (1996) Rapid visualization of plankton abundance and taxonomic composition using the Video Plankton Recorder. Deep Sea Res I 43:1947–1970

    Article  Google Scholar 

  • Deibel D, Daly KL (2007) Zooplankton processes in Arctic and Antarctic polynyas. In: Smith WO Jr, Barber DG (eds) Polynyas: Windows to the World. Elsevier Press, Amsterdam, pp 271–332

    Chapter  Google Scholar 

  • Ducklow HW, Wilson SE, Post AF, Stammerjohn SE, Erickson M, Lee S, Lowry KE, Sherrell RM, Yager PL (2015) Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elementa. doi:10.12952/journal.elementa.000046

    Google Scholar 

  • Dunbar RB, Leventer AR, Mucciarone DA (1998) Water column sediment fluxes in the Ross Sea, Antarctica: atmospheric and sea ice forcing. J Geophys Res 103:10741–10760

    Article  Google Scholar 

  • Elliot DT, Tang KW, Shields AR (2009) Mesozooplankton beneath the summer sea ice in McMurdo Sound, Antarctica: abundance, species composition, and DMSP content. Polar Biol 32:113–123

    Article  Google Scholar 

  • Foote KG, Stanton TK (2000) Acoustical methods. In: Harris R, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 223–258

    Chapter  Google Scholar 

  • Foster BA (1987) Composition and abundance of zooplankton under the spring sea-ice of McMurdo Sound, Antarctica. Polar Biol 8:41–48

    Article  Google Scholar 

  • Gardner WD, Richardson MJ, Smith WO Jr (2000) Seasonal build-up and loss of POC in the Ross Sea. Deep Sea Res II 47:3423–3450

    Article  CAS  Google Scholar 

  • Goeyens L, Elskens M, Catalano G, Lipizer M, Hecq JH, Goffart A (2000) Nutrient depletions in the Ross Sea and their relation with pigment stocks. J Mar Syst 27:195–208

    Article  Google Scholar 

  • Grosjean P, Picheral M, Warembourg C, Gorsky G (2004) Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J Mar Sci 61:518–525

    Article  Google Scholar 

  • Haberman KL, Ross RM, Quetin LB (2002) Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J Exp Mar Biol Ecol 283:97–113

    Article  Google Scholar 

  • Hansen FC, van Boekel WHM (1991) Grazing pressure of the calanoid copepod Temora longicornis on a Phaeocystis dominated spring bloom in a Dutch tidal inlet. Mar Ecol Prog Ser 78:123–129

    Article  Google Scholar 

  • Hopkins TL (1987) Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Mar Biol 96:93–106

    Article  Google Scholar 

  • JGOFS (1996) Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Report No. 19 of the Joint Global Ocean Flux Study, Scientific Committee on Oceanic Research, International Council on Scientific Unions, Intergovernmental Oceanographic Commission, Bergen, Norway

  • Kaufman DE, Friedrichs MAM, Smith WO Jr, Queste BY, Heywood KJ (2014) Biogeochemical variability in the southern Ross Sea as observed by a glider deployment. Deep Sea Res I 92:93–106

    Article  CAS  Google Scholar 

  • Kiørboe T (2013) Zooplankton body composition. Limnol Oceanogr 58:1843–1850

    Article  Google Scholar 

  • Knox GA (2006) Biology of the Southern Ocean. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Liu X, Smith WO Jr (2012) A statistical analysis of the controls on phytoplankton distribution in the Ross Sea, Antarctica. J Mar Syst 94:135–144

    Article  Google Scholar 

  • Maas AE, Elder LE, Dierssen HM, Seibel BA (2011) Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity. Mar Ecol Prog Ser 441:129–139

    Article  CAS  Google Scholar 

  • Manno C, Tirelli V, Accornero A, Fonda Umani S (2010) Importance of the contribution of Limacina helicina faecal pellets to the carbon pump in Terra Nova Bay (Antarctica). J Plankton Res 32:142–152

    Article  Google Scholar 

  • Manno C, Stowasser G, Enderlein P, Fielding S, Tarling GA (2015) The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosci 12:1955–1965

    Article  Google Scholar 

  • Mayzaud P, Pakhomov EA (2014) The role of zooplankton communities in carbon recycling in the ocean: the case of the Southern Ocean. J Plankton Res 36:1543–1556

    Article  Google Scholar 

  • McGillicuddy DM Jr, Sedwick PN, Dinniman MS, Arrigo KR, Bibby TS, Greenan BJW, Hofmann EE, Klinck JM, Smith WO Jr, Mack SL, Marsay CM, Sohst BH, van Dijken G (2015) Iron supply and demand in an Antarctic shelf system. Geophys Res Lett 42:8088–8097

    Article  Google Scholar 

  • Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, Long JD (2007) Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry 83:147–172

    Article  Google Scholar 

  • Nelson DM, Smith WO Jr (1986) Phytoplankton bloom dynamics of the western Ross Sea II. Mesoscale cycling of nitrogen and silicon. Deep Sea Res 33:1389–1412

    Article  CAS  Google Scholar 

  • Pane L, Feletti M, Francomacaro B, Mariottini GL (2004) Summer coastal zooplankton biomass and copepod community structure near the Italian Terra Nova Base (Terra Nova Bay, Ross Sea, Antarctica). J Plankton Res 26:1479–1488

    Article  CAS  Google Scholar 

  • Pinkerton MH, Bradford-Grieve JM (2014) Characterizing foodweb structure to identify potential ecosystem effects of fishing in the Ross Sea, Antarctica. ICES J Mar Sci 71:1542–1553

    Article  Google Scholar 

  • Sala A, Azzali M, Russo A (2002) Krill of the Ross Sea: distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic expeditions (January-February 2000). Sci Mar 66:123–133

    Article  Google Scholar 

  • Schine CMS, van Dijken G, Arrigo KR (2016) Spatial analysis of trends in primary production and relationship with large-scale climate variability in the Ross Sea, Antarctica (1997–2013). J Geophys Res. doi:10.1002/2015JC011014

    Google Scholar 

  • Smith WO Jr, Jones RM (2015) Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J Mar Sci 72:1952–1960

    Article  Google Scholar 

  • Smith WO Jr, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Res II 47:3119–3140

    Article  CAS  Google Scholar 

  • Smith WO Jr, Dinniman MS, Klinck JM, Hofmann EE (2003) Biogeochemical climatologies in the Ross Sea, Antarctica: seasonal patterns of nutrients and biomass. Deep Sea Res II 50:3083–3101

    Article  CAS  Google Scholar 

  • Smith WO Jr, Shields AR, Peloquin JA, Catalano G, Tozzi S, Dinniman MS, Asper VL (2006) Biogeochemical budgets in the Ross Sea: variations among years. Deep Sea Res II 53:815–833

    Article  CAS  Google Scholar 

  • Smith WO Jr, Asper V, Tozzi S, Liu X, Stammerjohn SE (2011a) Surface layer variability in the Ross Sea, Antarctica as assessed by in situ fluorescence measurements. Prog Oceanogr 88:28–45

    Article  Google Scholar 

  • Smith WO Jr, Shields AR, Dreyer JC, Peloquin JA, Asper VL (2011b) Interannual variability in vertical export in the Ross Sea: magnitude, composition, and environmental correlates. Deep-Sea Res I 58:147–159

    Article  Google Scholar 

  • Smith WO Jr, Tozzi S, Long MC, Sedwick PN, Peloquin JA, Dunbar RB, Hutchins DA, Kolber Z, DiTullio GR (2013) Spatial and temporal variations in variable fluorescence in the Ross Sea (Antarctica): oceanographic correlates and bloom dynamics. Deep-Sea Res I 79:141–155

    Article  CAS  Google Scholar 

  • Smith WO Jr, Ainley DG, Arrigo KR, Dinniman MS (2014) The oceanography and ecology of the Ross Sea. Annu Rev Mar Sci 6:469–487

    Article  Google Scholar 

  • Smith WO Jr, McGillicuddy DM Jr, Olson EB, Kosnyrev O, Peacock EE, Sosik HM (2017) Mesoscale variability in intact and ghost colonies of P. antarctica in the Ross Sea: Distribution and abundance. J Mar Syst 166:97–107

    Article  Google Scholar 

  • Steinberg DK, Landry MR (2017) Zooplankton and the ocean carbon cycle. Annu Rev Mar Sci 9:413–444

    Article  Google Scholar 

  • Stevens CJ, Pakhamov EA, Robinson KV, Hall JA (2015) Mesozooplankton biomass, abundance and community composition in the Ross Sea and the Pacific sector of the Southern Ocean. Polar Biol 38:275–286

    Article  Google Scholar 

  • Tagliabue A, Arrigo KR (2003) Anomalously low zooplankton abundance in the Ross Sea: an alternative explanation. Limnol Oceanogr 48:686–699

    Article  Google Scholar 

  • Thompson GA, Dinfrio EO, Alder VA (2013) Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the Southwestern Atlantic Ocean during summer. J Plankton Res 35:610–629

    Article  Google Scholar 

  • Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248

    Article  Google Scholar 

  • Weisse T, Tande T, Verity P, Hansen F, Gieskes W (1994) The trophic significance of Phaeocystis blooms. J Mar Syst 5:67–79

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Science Foundation (ANT-0944254 and ANT-1443258). We thank all of our PRISM colleagues who assisted in sampling: H. Doan, S. Charles, P. St. Laurent, and A. Mosby. Dr. J. Stone provided assistance with the Zooscan, and J. Cope confirmed many of our zooplankton identifications. This is VIMS contribution number 3642.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walker O. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, W.O., Delizo, L.M., Herbolsheimer, C. et al. Distribution and abundance of mesozooplankton in the Ross Sea, Antarctica. Polar Biol 40, 2351–2361 (2017). https://doi.org/10.1007/s00300-017-2149-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2149-5

Keywords

Navigation