Skip to main content

Advertisement

Log in

Phenology, biomass and productivity of sub-Antarctic Ruppia filifolia

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Seagrasses play important ecological roles in shallow coastal ecosystems from tropical to sub-polar seas. Ruppia filifolia (Phil.) Skottsberg is the seagrass with the world’s southernmost distribution but with virtually unknown biology and ecology. The goal of this study was to identify the ecological roles that R. filifolia might play in sub-Antarctic environments through the assessment of the development and primary productivity of this aquatic flowering plant. We monitored biomass and shoot density, rhizome growth and the presence of reproductive structures during 1 year in Skyring Sound, sub-Antarctic Chile. Ruppia filifolia forms perennial meadows with high biomass (124–293 g DW m−2) and shoot density (1800–5300 shoot m−2), a continuous presence of vertical stems and a rhizome plus root to shoot biomass ratio >1. Plant development shows a unimodal seasonal pattern with flowering in spring, and fruiting and maximum growth during summer. An average rhizome plastochrone of 37 days and median rhizome elongation of 27.5 cm plant−1 year−1 rank R. filifolia as a slow-growing seagrass. Primary productivity varied from 0.5 to 4.2 g DW m−2 day−1, resulting in an annual primary production of 700 g DW m−2. Ruppia filifolia in sub-Antarctic environments might play ecosystem roles (carbon sequestration, sediment stabilization, structural habitat, nutrition sources) as important as those played by seagrasses in tropical or temperate coastal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez M, San Martín C, Novoa C, Toledo G, Ramírez C (2010) Diversidad florística, vegetacional y de hábitats en el Archipiélago de los Chonos (Región de Aisén, Chile). An Inst Patagon 38:35–56

    Google Scholar 

  • Calado G, Duarte P (2000) Modelling growth of Ruppia cirrhosa. Aquat Bot 68:29–44

    Article  Google Scholar 

  • Carruthers TJB, Walker DI, Kendrick GA (1999) Abundance of Ruppia megacarpa Mason in a seasonally variable estuary. Estuar Coast Shelf Sci 48:497–509

    Article  CAS  Google Scholar 

  • Cho HJ, Poirrier MA (2005) Seasonal growth and reproduction of Ruppia maritima L. s.l. in Lake Pontchartrain, Lousiana, USA. Aquat Bot 81:37–49

    Article  Google Scholar 

  • Clarke SM, Kirkman H (1989) Seagrass dynamics. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier, Amsterdam, pp 304–345

    Google Scholar 

  • Congdom RA, McComb AJ (1979) Productivity of Ruppia: seasonal changes and dependence on light in an australian estuary. Aquat Bot 6:121–132

    Article  Google Scholar 

  • Den Hartog C (1981) Aquatic plant communities of poikilosaline waters. Hydrobiologia 81:15–22

    Article  Google Scholar 

  • Den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrass biology, ecology and conservation. Springer, Dordrecht, pp 1–23

    Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65:159–174

    Article  Google Scholar 

  • Duarte CM, Kirkman H (2001) Methods for the measurement of seagrass abundance and depth distribution. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 141–153

    Chapter  Google Scholar 

  • Dunton KH (1990) Production ecology of Ruppia maritima L. s.l. and Halodule wrightii Aschers, in two subtropical estuaries. J Exp Mar Biol Ecol 143:147–164

    Article  Google Scholar 

  • Dusén P (1900) Die Gefässplanzen der Magellansländer. Sven Exped Till Magellansländerna 3:77–265

    Google Scholar 

  • Green EP, Short FT (eds) (2003) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  • Harrison PG (1982) Seasonal and year-to-year variations in mixed intertidal populations of Zostera japonica Aschers. & Graebn. and Ruppia maritima L. s.l. Aquat Bot 14:357–371

    Article  Google Scholar 

  • Hüne M, Vega R (2015) Spatial variation in the diet of Patagonotothen tessellata (Pisces, Nototheniidae) from the fjord and channels of southern Chilean Patagonia. Polar Biol 1–10. doi:10.1007/s00300-015-1726-8

  • Ito Y, Ohi-Toma T, Murata J, Tanaka N (2010) Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. Amer J Bot 97:1156–1167

    CAS  Google Scholar 

  • IUCN Red List of Threatened Species. Version 2014. www.iucnredlist.org. Downloaded on 26 Mar 2015

  • Kantrud HA (1991) Wigeongrass (Ruppia maritima L.): a literature review. U.S. Fish and Wildlife Service, Fish and Wildlife Research 10. Jamestown, ND. Northern Prairie Wildlife Research Center www.npwrc.usgs.gov/resource/plants/ruppia/index.htm

  • Kilian R, Baeza O, Steinke T, Arevalo M, Rios C, Schneider C (2007) Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magellanes fjord system of Chile (531S). Quat Int 161:90–107

    Article  Google Scholar 

  • Mannino AM, Sarà G (2006) The effect of Ruppia cirrhosa features on macroalgae and suspended matter in a Mediterranean shallow system. Mar Ecol 27:350–360

    Article  CAS  Google Scholar 

  • Mansilla A, Ramírez-García P, Murcia S, Terrados J (2013) Distribution and biomass of Ruppia filifolia (Phil.) Skottsberg, Ruppiaceae in Skyring sound, Sub-Antarctic Ecoregion of Magallanes, Chile. An Inst Patagon 41:91–97

    Article  Google Scholar 

  • Marbà N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174:269–280

    Article  Google Scholar 

  • Mazzella L, Gambi MC (1993) First oceanographic cruise in the Strait of Magallanes (February–March 1991): report of benthic populations of the intertidal zone of the “Seno Skyring.” Nat Sc Com Ant, Chilean Cruise, February–March 1991 Data Report (1993) II. p 283–296

  • Moore DM (1973) Additions and amendments to the vascular flora of the Falkland Islands. Br Antarct Surv Bull 32:85–88

    Google Scholar 

  • Moore DM (1983) Flora of Tierra del Fuego. Anthony Nelson, England

    Google Scholar 

  • Moore KA (2004) Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J Coast Res 45:162–178

    Article  Google Scholar 

  • Obrador B, Pretus JL (2010) Spatiotemporal dynamics of submerged macrophytes in a Mediterranean coastal lagoon. Estuar Coast Shelf Sci 87:145–155

    Article  CAS  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KLJ, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Patriquin DG (1975) “Migration” of blowouts in seagrass beds at Barbados and Carriacou, West Indies, and its ecological and geological implications. Aquat Bot 1:163–189

    Article  Google Scholar 

  • Pergent G, Pasqualini V, Pergent-Martini C, Ferrat L, Fernandez C (2006) Variability of Ruppia cirrhosa in two coastal lagoons with differing anthropogenic stresses. Bot Mar 49:103–110

    Article  Google Scholar 

  • San Martín C, Pérez Y, Montenegro D, Álvarez M (2011) Diversidad, hábito y hábitat de macrófitos acuáticos en la Patagonia Ocidental (región de Aisén, Chile). An Inst Patagon 39:23–41

    Article  Google Scholar 

  • Schneider C, Glaser M, Kilian R, Santana A, Butorovic N, Casassa G (2003) Weather observations across the southern Andes at 53° S. Phys Geogr 24:97–119

    Article  Google Scholar 

  • Short FT, Coles RG (2001) Global seagrass research methods. Elsevier, Amsterdam

    Google Scholar 

  • Short FT, Duarte CM (2001) Methods for the measurement of seagrass growth and production. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 155–182

    Chapter  Google Scholar 

  • Short FT, Carruthers TJB, Dennison WC, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Skottsberg CJF (1916) Die Vegetationsverhältnisse längs der Codillera de los Andes S. von 41 S. K. svenska Vetensk Akad. Handl 56:1–366

    Google Scholar 

  • Spalding M, Taylor M, Ravilious C, Short F, Green E (2003) Global overview—the distribution and status of seagrasses. In: Green EP, Short FT (eds) World Atlas of Seagrasses. University of California Press, Berkeley, pp 5–26

    Google Scholar 

  • StatSoft Inc (2005). STATISTICA (data analysis software system), version 7.1. www.statsoft.com

  • Stevenson JC (1988) Comparative ecology of submersed grass beds in freshwater, estuarine and marine environments. Limnol Oceanogr 33:867–893

    Article  CAS  Google Scholar 

  • Verhoeven JTA (1979) The ecology of Ruppia-dominated communities in Western Europe. I. Distribution of Ruppia representative in relation to their autoecology. Aquat Bot 6:197–268

    Article  CAS  Google Scholar 

  • Verhoeven JTA (1980a) The Ecology of Ruppia-dominated communities in Western Europe. III. Aspects of production, consumption and decomposition. Aquat Bot 8:209–253

    Article  CAS  Google Scholar 

  • Verhoeven JTA (1980b) The ecology of Ruppia-dominated communities in Western Europe. II. Synecological classification. structure and dynamics of the macroflora and macrofauna communities. Aquat Bot 8:1–85

    Article  Google Scholar 

  • Volleberg PJ, Congdon RA (1986) Germination and growth of Ruppia polycarpa and Lepilaena cylindrocarpa in ephemeral saltmarsh pools, Westernport Bay, Victoria. Aquat Bot 26:165–179

    Article  Google Scholar 

  • Vromans DC, Adams JB, Riddin T (2013) The phenology of Ruppia cirrhosa (Petagna) Grande and Chara sp. in a small temporarily open/closed estuary, South Africa. Aquat Bot 110:1–5

    Article  Google Scholar 

  • Ward LG, Michael Kemp W, Boynton WR (1984) The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar Geol 59:85–103

    Article  Google Scholar 

  • Waycott M, Duarte C, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqureanf JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially financed by a Universidad de Magallanes’ Internal Research Funding Program granted to S.M., and by Programa de Atracción de Capital Humano Avanzado del Extranjero, Modalidad Estadías Cortas (PAI–MEC 2011) of the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile. We thank Matías Hüne and Ernesto Davis for their help in the field and Javier Rendoll for his help in the laboratory.

Conflict of interest

We present no conflicts of interest to describe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Murcia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia, S., Terrados, J., Ramírez-García, P. et al. Phenology, biomass and productivity of sub-Antarctic Ruppia filifolia . Polar Biol 38, 1677–1685 (2015). https://doi.org/10.1007/s00300-015-1734-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1734-8

Keywords

Navigation