Skip to main content

Advertisement

Log in

The ciliate Mesodinium rubrum and its cryptophyte prey in Antarctic aquatic environments

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

For growth, the mixotrophic ciliate Mesodinium rubrum sequesters organelles from ingested prey. Feeding in the field is poorly known; however, isolates of an Antarctic M. rubrum strain are maintained in culture on a diet of Teleaulex/Plagioselmis/Geminigera-like cryptophytes, suggesting that cryptophyte presence may be an important factor controlling M. rubrum distribution and abundance in nature. We augmented field surveys with published findings to establish the distribution of both M. rubrum and a Geminigera-like cryptophyte in a range of East Antarctic aquatic environments. We also studied their overwinter abundances in Ace Lake to determine whether a predator–prey relationship existed between the two species in this natural enclosed ecosystem. The ciliate and the cryptophyte co-occurred in the majority of sites sampled which ranged widely in salinity (2.2–150 ‰) and temperature (−3.0–16 °C). We observed a cyclic relationship in species abundances in Ace Lake, implying population growth for M. rubrum responded to changed cryptophyte abundance. Mesodinium rubrum likely exerts top-down pressure on cryptophyte abundances in natural enclosed ecosystems especially under low-light winter conditions. The ciliate can be considered an apex predator in highly truncated food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bell EM, Laybourn-Parry J (1999a) Annual plankton dynamics in an Antarctic saline lake. Freshwater Biol 41:507–519

    Article  Google Scholar 

  • Bell EM, Laybourn-Parry J (1999b) The plankton community of a young, eutrophic, Antarctic saline lake. Polar Biol 22:248–253

    Article  Google Scholar 

  • Deane JA, Strachan IM, Saunders GW, Hill DR, McFadden GI (2002) Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38:1236–1244

    Article  CAS  Google Scholar 

  • Ducklow HW, Fraser WR, Meredith MP (2013) West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography 26:190–203

    Article  Google Scholar 

  • Franzmann PD, Skyring GW, Burton HR, Deprez PP (1988) Sulfate reduction rates and some aspects of the limnology of four lakes and a fjord in the Vestfold Hills, Antarctica. Hydrobiologia 165:25–33

    Article  CAS  Google Scholar 

  • Gibson JAE (1999) The meromictic lakes and stratified marine basins of the Vestfold Hills East Antarctica. Antarct Sci 11:175–192

    Google Scholar 

  • Gibson JAE, Ferris JM, van den Hoff J, Burton HR (1989) Temperature profiles of saline lakes of the Vestfold Hills. Aust Natl Antarct Res Exped Res Notes 67:1–75

    Google Scholar 

  • Gibson JAE, Swadling KM, Pitman TM, Burton HR (1997) Overwintering populations of Mesodinium rubrum (Ciliophora: Haptorida) in lakes of the Vestfold Hills East Antarctica. Polar Biol 17:175–179

    Article  Google Scholar 

  • Grey J, Laybourn-Parry J, Leakey RJG, McMinn A (1997) Temporal patterns of protozooplankton abundance and their food in Ellis Fjord Princess Elizabeth Land East Antarctica. Estuar Coast Shelf Sci 45:17–25

    Article  Google Scholar 

  • Gustafson DE, Stoecker DK, Johnson MD, van Heukelem WF, Sneider K (2000) Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Hasle GR (1978) The inverted microscope method. In: Sournia A (ed) Phytoplankton manual Paris. UNESCO, France, pp 89–96

    Google Scholar 

  • Hill DRA (1991) A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30:170–188

    Article  Google Scholar 

  • Johnson MD, Stoecker DK (2005) Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat Microb Ecol 39:303–312

    Article  Google Scholar 

  • Johnson MD, Tengs T, Oldach D, Stoecker DK (2006) Sequestration performance and functional control of Cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J Phycol 42:1235–1246

    Article  CAS  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, Stoecker DK, Marshall HG (2013) Seasonal dynamics of Mesodinium rubrum in Chesapeake Bay. J Plankton Res 35:877–893

    Article  Google Scholar 

  • Labrenz M, Hirsch P (2001) Physiological diversity and adaptations of aerobic heterotrophic bacteria from different depths of hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). Polar Biol 24:320–327

    Article  Google Scholar 

  • Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc B 362:2273–2289

    Article  CAS  Google Scholar 

  • Lohmann H (1908) Untersuchungen zur feststellung des vollstandigen gehaltes des meeres and plankton. Wissenschaftliche Meeresuntersuchungen, Kiel Neue Folge 10:129–370

    Google Scholar 

  • Maykut GA, Grenfell TC (1975) The spectral distribution of light beneath first-year sea ice in the Arctic. Limol Oceanogr 20:554–563

    Article  Google Scholar 

  • McMinn A, Bleakley N, Steinburner K, Roberts D, Trenerry L (2000) Effect of permanent sea ice cover and different nutrient regimes on the phytoplankton succession of fjords of the Vestfold Hills Oasis, eastern Antarctica. J Plankton Res 22:287–303

    Article  CAS  Google Scholar 

  • Moeller HV, Johnson MD, Falkowski PG (2011) Photoacclimation in the phototrophic marine ciliate Mesodinium rubrum (Ciliophora). J Phycol 47:324–332. doi:10.1111/j.1529-8817.2010.00954.x

    Article  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980

    Article  Google Scholar 

  • Myung G, Yih W, Kim HS, Park JS, Cho BC (2006) Ingestion of bacterial cells by the marine photosynthetic ciliate Myrionecta rubra. Aquat Microb Ecol 44:175–180

    Article  Google Scholar 

  • Park JS, Myung G, Kim HS, Cho BC, Yih W (2007) Growth responses of the marine photosynthetic ciliate Myrionecta rubra to different cryptomonad strains. Aquat Microb Ecol 48:83–90

    Article  Google Scholar 

  • Perriss SJ, Laybourn-Parry J (1997) Microbial communities in saline lakes of the Vestfold Hills (eastern Antarctica). Polar Biol 18:135–144

    Article  Google Scholar 

  • Perriss S, Laybourn-Parry J, Marchant HJ (1995) Widespread occurrence of the unique autotrophic ciliate Mesodinium rubrum (Ciliophora: Haptorida) in brackish and saline lakes of the Vestfold Hills (eastern Antarctica). Polar Biol 15:423–428

    Article  Google Scholar 

  • Peterson TD, Golda RL, Garcia ML, Li B, Maier MA, Needoba JA, Zuber P (2013) Associations between Mesodinium rubrum and cryptophyte algae in the Columbia River estuary. Aquat Microb Ecol 68:117–130

    Article  Google Scholar 

  • Rankin LM, Gibson JAE, Franzmann PD, Burton HR (1999) The chemical stratification and microbial communities of Ace Lake Antarctica: a review of the characteristics of a marine-derived meromictic lake. Polarforschung 66:33–52

    Google Scholar 

  • Roberts D, McMinn A (1998) A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. J Paleolimnol 19:99–113

    Article  Google Scholar 

  • Sanders RW (1991) Mixotrophic protists in marine and freshwater ecosystems. J Eukaryot Microbiol 38:76–81

    Google Scholar 

  • Scott FJ, van den Hoff J (2005) Cryptophytes. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Goanna Print, Canberra, pp 317–318

    Google Scholar 

  • Smith M, Hansen PJ (2007) Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH. Mar Ecol Prog Ser 338:61–70

    Article  Google Scholar 

  • Stoecker DK, Johnson MD, de Vargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310

    Article  Google Scholar 

  • Taylor DL, Lee CC (1971) A new cryptomonad from Antarctica: Cryptomonas cryophila sp. nov. Arch Mikrobiol 75:269–280

    Article  Google Scholar 

  • Taylor FJR, Blackbourn DJ, Blackbourn J (1971) The red-water ciliate Mesodinium rubrum and its” incomplete symbionts”: a review including new ultrastructural observations. J Fish Res Board Can 28:391–407

    Article  Google Scholar 

  • Thomas DN, Dieckmann CS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • van den Hoff J, Burton HR, Vesk M (1989) An encystment stage, bearing a new scale type, of the Antarctic prasinophyte Pyramimonas gelidicola and its paleolimnological and taxonomic significance. J Phycol 25:446–454

    Article  Google Scholar 

  • Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Curmi PM (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 163-Å resolution. Proc Nat Acad Sci USA 96:8901–8906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. John Ferris and Harry Burton conceived the early field survey. EMB was supported by an Australian Scientific Advisory Committee (ASAC) grant (#40) with additional support provided by a Scientific Committee for Antarctic Research (SCAR) Prince of Asturias Fellowship (2003) and a Deutsche Forschungsgemeinschaft (DFG) overseas stipend (#BE 2579/3-1). Drs John Gibson, Fiona Scott and Andrew Davidson improved early versions of the manuscript. David Smith of the Australian Antarctic Data Centre produced Online Resource 2. Sarah Payne collected and photographed Mesodinium from Ace Lake for Fig. 1b and c in August, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John van den Hoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 75 kb)

Supplementary material 2 (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Hoff, J., Bell, E. The ciliate Mesodinium rubrum and its cryptophyte prey in Antarctic aquatic environments. Polar Biol 38, 1305–1310 (2015). https://doi.org/10.1007/s00300-015-1686-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1686-z

Keywords

Navigation