Skip to main content
Log in

Large seasonal variation in phytoplankton production in the Amundsen Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

To better estimate annual primary production in the Amundsen Sea, which is one of the highest productivity regions in the Southern Ocean, the seasonal variations in carbon and nitrogen uptake rates of phytoplankton were investigated in this study. Based on 13C–15N dual isotope tracer techniques, the average daily productivities for the Amundsen polynya (AP), Pine Island polynya (PIP) and non-polynya regions were 0.25, 0.16 and 0.12 g C m−2 day−1, respectively. The average daily uptake rates of total nitrogen were 60.2, 53.5 and 34.8 mg N m−2 day−1 for the AP, PIP and non-polynya stations, respectively. In spite of the high concentration of nitrate in the Amundsen Sea, daily nitrate uptake rates (mean ± SD = 0.02 ± 0.01 g N m−2 day−1) were lower than ammonium uptakes for all productivity stations in this study, which resulted in a significantly lower f-ratio (mean ± SD = 0.44 ± 0.24) than that (mean ± SD = 0.71 ± 0.15) of the previous year. The substantially lower uptake rates of carbon and nitrogen and the f-ratio, especially in the AP, are due to a large seasonal variation in the uptake rates mainly caused by the shorter daytime duration and partly due to lower light availability induced by deeper mixed conditions in the present study compared with the previous study in 2010/2011. The large seasonal variation in daily phytoplankton production should be considered to better estimate annual production as a basic food source for higher trophic levels in the Amundsen Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res. doi:10.1029/2002JC001739

    Google Scholar 

  • Arrigo KR, Worthen DL, Lizotte SMP (1998) Primary production in southern ocean waters. J Geophys Res 103:15587–15600. doi:10.1029/98JC00930

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL, Bushinsky S (2008) Primary production in the southern ocean, 1997–2006. J Geophys Res. doi:10.1029/2007JC004551

    Google Scholar 

  • Arrigo KR, Lowry KE, van Dijken GL (2012) Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antartica. Deep Sea Res Part II op Stud Oceanogr 5:71–76

    Google Scholar 

  • Bode A, Castro CG, Doval MD, Varela M (2002) New and regenerated production and ammonium regeneration in the western Bransfield Strait region (Antarctica) during phytoplankton bloom conditions in summer. Deep Sea Res Part II Top Stud Oceanogr 49:787–804

    Article  CAS  Google Scholar 

  • Brainerd KE, Gregg MC (1995) Surface mixed and mixing layer depths. Deep Sea Res A 9:1521–1543

    Article  Google Scholar 

  • Coale KH, Gordon RM, Wang X (2005) The distribution and behavior of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170 W. Deep Sea Res Part I Oceanogr Res Pap 52:295–318

    Article  CAS  Google Scholar 

  • Cochlan WP, Harrison PJ, Denman KL (1991) Diel periodicity of nitrogen uptake by marine phytoplankton in nitrate-rich environments. Limnol Oceanogr 36:1689–1700

    Article  CAS  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc Lond B Biol Sci 362:67–94

    Article  PubMed Central  PubMed  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    Article  CAS  Google Scholar 

  • Dugdale RC, Wilkerson FP, Hogue VE, Marchi A (2007) The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuar Coast Shelf Sci 73:17–29

    Article  Google Scholar 

  • El-Sayed SZ, Biggs DC, Holm-Hansen O (1983) Phytoplankton standing crop, primary productivity, and near-surface nitrogenous nutrient fields in the Ross Sea, Antarctica. Deep Sea Res A 30:871–886

    Article  Google Scholar 

  • Elskens M, Baeyens W, Goeyens L (1997) Contribution of nitrate to the uptake of nitrogen by phytoplankton in an ocean margin environment. Hydrobiologia 353:139–152

    Article  CAS  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Article  Google Scholar 

  • Fouilland E, Gosselin M, Rivkin R, Vasseur C, Mostajir B (2007) Nitrogen uptake by heterotrophic bacteria and phytoplankton in Arctic surface waters. J Plankton Res 29:369–376

    Article  CAS  Google Scholar 

  • Fragoso GM, Smith WO Jr (2012) Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. J Mar Syst 89:19–29

    Article  Google Scholar 

  • Glibert PM, Biggs DC, McCarthy JJ (1982) Utilization of ammonium and nitrate during austral summer in the Scotia Sea. Deep Sea Res A 29:837–850

    Article  CAS  Google Scholar 

  • Goeyens L, Tréguer P, Baumann MEM, Baeyens W, Dehairs F (1995) The leading role of ammonium in the nitrogen uptake regime of Southern Ocean marginal ice zones. J Mar Syst 6:345–361

    Article  Google Scholar 

  • Hahm D, Rhee TS, Kim H-C, Park J, Kim Y-N, Shin HC, Lee SH (2014) Spatial and temporal variation of net community production and its regulating factors in the Amundsen Sea, Antarctica. J Geophys Res. doi:10.1002/2013JC009762

  • Hodal H, Kristiansen S (2008) The importance of small-called phytoplankton in spring blooms at the marginal ice zone in the northern Barents Sea. Deep Sea Res Part II Top Stud Oceanogr 55:2176–2185

    Article  CAS  Google Scholar 

  • Jennings JC Jr, Gordon LI, Nelson DM (1984) Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309:51–54

    Article  CAS  Google Scholar 

  • Joubert WR, Thomalla SJ, Waldron HN, Lucas MI (2011) Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer. Biogeosciences 8:4917–4952

    Article  Google Scholar 

  • Kang S-H, Kang J-S, Chung K-H, Lee M-Y, Lee B-Y, Chung H, Kim Y, Kim D-Y (1997) Seasonal variation of nearshore Antarctic microalgae and environmental factors in Marian Cove, King George Island. Korean J Polar Res 8:9–27

    Google Scholar 

  • Koike I, Holm-Hansen O, Biggs DC (1986) Inorganic nitrogen metabolism by Antarctic phytoplankton with special reference to ammonium cycling. Mar Ecol Prog Ser 30:105–116

    Article  CAS  Google Scholar 

  • Lee SH, Kim BK, Yun MS, Joo HT, Yang EJ, Kim YN, Shin HC, Lee SH (2012) Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol 35:1721–1733

    Article  Google Scholar 

  • McCarthy JJ, Taylor WR, Taft JL (1977) Nitrogenous nutrition of the plankton in the Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences. Limnol Oceanogr 22:996–1011

    Article  CAS  Google Scholar 

  • Moline MA, Prézelin BB (1996) Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over subseasonal, seasonal and interannual time scales. Mar Ecol Prog Ser 145:143–160

    Article  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol 10:1973–1980

    Article  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Olson RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074

    Article  CAS  Google Scholar 

  • Owens NJP, Priddle J, Whitehouse MJ (1991) Variations in phytoplanktonic nitrogen assimilation around South Georgia and in the Bransfield Strait (Southern Ocean). Mar Chem 35:287–304

    Article  CAS  Google Scholar 

  • Peloquin JA, Smith WO Jr (2007) Phytoplankton blooms in the Ross Sea, Antarctica: interannual variability in magnitude, temporal patterns, and composition. J Geophys Res 112:C08013. doi:10.1029/2006JC003816

    Google Scholar 

  • Probyn TA, Waldron HN, Searson S, Owens NJP (1996) Diel variability in nitrogen uptake at photic and sub-photic depths. J Plankton Res 18:2063–2078

    Article  Google Scholar 

  • Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Chang 79:99–109

    Article  Google Scholar 

  • Savoye N, Dehairs F, Elskens M, Cardinal D, Kopczyńska EE, Trull TW, Wright S, Baeyens W, Griffiths B (2004) Regional variation of spring N-uptake and new production in the Southern Ocean. Geophys Res Lett 31:L03301. doi:10.1029/2003GL018946

    Google Scholar 

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    Article  CAS  Google Scholar 

  • Sedwick PN, Garcia NS, Riseman SF, Marsay CM, DiTullio GR (2007) Evidence for high iron requirements of colonial Phaeocystis Antarctica at low irradiance. Biogeochemistry 83:83–97

    Article  Google Scholar 

  • Smith WO Jr, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: a satellite perspective. J Geophys Res. doi:10.1029/2007JC004251

    Google Scholar 

  • Smith WO Jr, Nelson DM, DiTullio GR, Leventer AR (1996) Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates. J Geophys Res 101:18455–18465

    Article  CAS  Google Scholar 

  • Smith WO Jr, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep Sea Res Part II Top Stud Oceanogr 47:3119–3140

    Article  CAS  Google Scholar 

  • Tremblay JÉ, Smith WO Jr (2007) Primary production and nutrient dynamics in polynyas. In: Barber DE, Smith WO Jr (eds) Polynyas: windows to the world, 74. Elsevier, Berlin

    Google Scholar 

Download references

Acknowledgments

We thank the captain and crew of the Korean Research Icebreaker, Araon, for their outstanding assistance during the cruise. We very much appreciate the constructive comments by three reviewers, which greatly improved the earlier version of the manuscript. This research was supported by the Korea Polar Research Institute (KOPRI; PP14020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.K., Joo, H., Song, H.J. et al. Large seasonal variation in phytoplankton production in the Amundsen Sea. Polar Biol 38, 319–331 (2015). https://doi.org/10.1007/s00300-014-1588-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1588-5

Keywords

Navigation