Skip to main content
Log in

A review of current Antarctic limno-terrestrial microfauna

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic arthropods (mites and springtails) have been the subject of numerous studies. However, by far, the most diverse and numerically dominant fauna in Antarctica are the limno-terrestrial microfauna (tardigrades, rotifers and nematodes). Although they have been the focus of several studies, there remains uncertainty of the actual number of species in Antarctica. Inadequate sampling and conserved morphology are the main cause of misclassification of species and underestimation of this diversity. Most species’ distributional records are dominated by proximity to research stations or limited opportunistic collections, and therefore, an absence of records for a species may also be a consequence of the limitations of sampling. Limitations in fundamental knowledge of how many species are present and how widespread they are prevents any meaningful analyses that have been applied more generally to the arthropods within Antarctica, such as exploring ancient origins (at least pre-last glacial maximum) and tracking colonisation routes from glacial refugia. In this review, we list published species names and where possible the distribution of microfaunal (tardigrade, rotifer and nematode) species reported for Antarctica. Our current state of knowledge of Antarctic records (south of 60°S) includes 28 bdelloid rotifers, 66 monogonont rotifers, 59 tardigrades and 68 nematodes. In the light of the difficulties in working with microfauna across such geographical scales, we emphasise the need for molecular markers to help understand the ‘true levels’ of diversity and suggest future directions for Antarctic biodiversity assessment and species discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    CAS  Google Scholar 

  • Adams BJ, Wall DH, Gozel U, Dillman AR, Chaston JM, Hogg ID (2007) The southernmost worm, Scottnema lindsayae (Nematoda): diversity, dispersal and ecological stability. Polar Biol 30:809–815

    Google Scholar 

  • Andrássy I (1981) Revision of the order Monhysterida (Nematoda) inhabiting soil and inland waters. Opusc Zool Bp 17–18:13–47

    Google Scholar 

  • Andrássy I (1998) Nematodes in the Sixth Continent. J Nematode Morph Syst 1:107–186

    Google Scholar 

  • Andrássy I (2006) Halomonhystera, a new genus distinct from Geomonhystera Andrássy, 1981 (Nematoda: Monhysteridae). Meiofauna Mar 15:11–24

    Google Scholar 

  • Andrássy I (2008a) Eudorylaimus species (Nematoda: Dorylaimida) of continental Antarctica. J Nematode Morph Syst 11:49–66

    Google Scholar 

  • Andrássy I (2008b) On the male of the Antarctic nematode species, Plectus murrayi Yeates, 1970. J Nematode Morph Syst 11:87–89

    Google Scholar 

  • Andrássy I, Gibson J (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. n. Polar Biol 30:669–678

    Google Scholar 

  • Binda MG, Pilato G (2000) Diphascon (Adropion) tricuspidatum, a new species of eutardigrade from Antarctica. Polar Biol 23:75–76

    Google Scholar 

  • Blouin M (2000) Brief communication. Neutrality tests on mtDNA: unusual results from nematodes. J Hered 91:156–158

    PubMed  CAS  Google Scholar 

  • Bohra P, Sanyal AK, Hussain A, Mitra B (2010) Five new records of nematodes from East Antarctica. J Threat Taxa 2:974–977

    Google Scholar 

  • Boström S (1995) Populations of Plectus acuminatus Bastian, 1865 and Panagrolaimus magnivulvatus n. sp. (Nematoda) from nunatakks in Dronning Maud Land, East Antarctica. Fundam Appl Nematol 18:25–34

    Google Scholar 

  • Boström S (1996) Chiloplectus masleni sp. nov. and variability in populations of Plectus acuminatus Bastian 1865 (Nematoda: Plectidae) from the nunatak Basen, Vestfjella, Dronning Maud Land, East Antarctica. Polar Biol 17:74–80

    Google Scholar 

  • Boström S (2005) Nematodes from Schirmacher Oasis, Dronning Maud Land, East Antarctica. Russ J Nematol 13:43–54

    Google Scholar 

  • Boström S, Holovachov O, Nadler S (2010) Description of Scottnema lindsayae Timm, 1971 (Rhabditida: Cephalobidae) from Taylor Valley, Antarctica and its phylogenetic relationship. Polar Biol 34:1–12

    Google Scholar 

  • British Antarctic Survey (2004) Antarctica, 1:10,000,000 scale map. British Antarctic Survey, Cambridge

    Google Scholar 

  • Burgess JS, Spate AP, Shevlin J (1994) The onset of deglaciation in the Larsemann Hills, Eastern Antarctica. Antarct Sci 6:491–495

    Google Scholar 

  • Burn AJ (1984) Life cycle strategies in two Antarctic Collembola. Oecologia 64:223–229

    Google Scholar 

  • Convey P, Block W (1996) Antarctic Diptera: ecology, physiology and distribution. Eur J Entomol 93:1–13

    Google Scholar 

  • Convey P, McInnes SJ (2005) Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86:519–527

    Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    PubMed  CAS  Google Scholar 

  • Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    PubMed  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand CD, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048

    Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DK, Bokhorst S, Cummings V, Ducklow HW, Frati F, Green TA, Gordon S et al (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Google Scholar 

  • Courtright EM, Wall DH, Virginia RA, Frisse LM, Vida JT, Thomas WK (2000) Nuclear and mitochondrial DNA sequence diversity in the Antarctic nematode Scottnema lindsayae. J Nematol 32:143–153

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cromer L, Gibson JAE, Swadling KM, Hodgson DA (2006) Evidence for a lacustrine faunal refuge in the Larsemann Hills, East Antarctica, during the last glacial maximum. J Biogeogr 33:1314–1323

    Google Scholar 

  • Czechowski P, Sands CJ, Adams BJ, D’Haese CA, Gibson JAE, McInnes SJ, Stevens MI (2012) Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebr Syst 26:526–538

    Google Scholar 

  • Dartnall HJG (1983) Rotifers of the Antarctic and subantarctic. Hydrobiologia 104:57–60

    Google Scholar 

  • Dartnall HJG (1995) Rotifers, and other aquatic invertebrates, from the Larsemann Hills, Antarctica. Pap Proc Roy Soc Tasmania 129:17–23

    Google Scholar 

  • Dartnall HJG (2000) A limnological reconnaissance of the Vestfold Hills. ANARE Rep 141:1–53

    Google Scholar 

  • Dartnall HJG (2005) Freshwater invertebrates of subantarctic South Georgia. J Nat Hist 39:3321–3342

    Google Scholar 

  • Dartnall HJG, Hollowday ED (1985) Antarctic Rotifers. Br Antarct Surv Sci Rep 100:1–46

    Google Scholar 

  • Dastych H (1984) The Tardigrada from Antarctic with descriptions of several new species. Acta Zool Cracov 27:377–436

    Google Scholar 

  • Dastych H (1989) An annotated list of Tardigrada from the Antarctic. Entomol Mitt Zool Mus Hambg 9:249–257

    Google Scholar 

  • Dastych H (1991) Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitt Hamb Zool Mus Inst 88:141–159

    Google Scholar 

  • Dastych H (2003) Diphascon langhovdense (Sudzuki, 1964) stat. nov., a new taxonomic status for the semi-terrestrial tardigrade (Tardigrada). Acta Biol Benrodis 12:19–25

    Google Scholar 

  • Dastych H, Harris JM (1995) A new species of the genus Macrobiotus from inland nunataks in western Dronning Maud Land, continental Antarctica (Tardigrada). Entomol Mitt Zool Mus Hambg 11:175–182

    Google Scholar 

  • Dastych H, McInnes S (1994) Hexapodibius boothi sp. n., a new species of semi-terrestrial tardigrade from the Maritime Antarctic. Entomol Mitt Zool Mus Hambg 11:111–117

    Google Scholar 

  • Dastych H, Ryan PG, Watkins BP (1990) Notes on Tardigrada from western Dronning Maud Land (Antarctica) with a description of two new species. Entomol Mitt Zool Mus Hambg 10:57–66

    Google Scholar 

  • De Smet WH, Gibson JA (2008) Rhinoglena kutikovae n. sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. Polar Biol 31:595–603

    Google Scholar 

  • Derycke S, Vanaverbeke J, Rigaux A, Backeljau T, Moens T (2010) Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE 5:e13716

    PubMed  PubMed Central  Google Scholar 

  • Donner J (1972) Report on the finding of Rotifera (Rotatoria) from Antarctica. Polskie Arch Hydrobiol 19:251–252

    Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    PubMed  CAS  Google Scholar 

  • Fontaneto D, Barraclough TG, Chen K, Ricci C, Herniou EA (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 17:3136–3146

    PubMed  CAS  Google Scholar 

  • Fontaneto D, Kaya M, Herniou EA, Barraclough TG (2009) Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phylogen Evol 53:182–189

    CAS  Google Scholar 

  • Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci 111:5634–5639

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frati F, Spinsanti G, Dallai R (2001) Genetic variation of mtCOII gene sequences in the collembolan Isotoma klovstadi from Victoria Land, Antarctica: evidence for population differentiation. Polar Biol 24:934–940

    Google Scholar 

  • Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Google Scholar 

  • Gagarin VG (2009) A revision of the genus Eutobrilus Tsalolikhin, 1981 (Nematoda, Triplonchida). Inl Wat Biol 2:205–212

    Google Scholar 

  • Ghosh SC, Chatterjee A, Mitra B, De J (2005) Antarctenchus motililus sp. n. (Nematoda: Tylenchida) from Schirmacher Oasis, East Antarctica. J Interacademica 9:367–371

    Google Scholar 

  • Gibson JAE, Cromer L, Agius JT, McInnes SJ, Marley NJ (2007) Tardigrade eggs and exuviae in Antarctic lake sediments: insights into Holocene dynamics and origins of the fauna. J Limnol 66(Suppl. 1):65–71

    Google Scholar 

  • Gore DB, Rhodes EJ, Augustinus PC, Leishman MR, Colhoun EA, Rees-Jones J (2001) Bunger Hills, East Antarctica: ice free at the last glacial maximum. Geology 29:1103–1106

    CAS  Google Scholar 

  • Greenslade P (1995) Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. Pol Pismo Entomol 64:305–319

    Google Scholar 

  • Greenslade P, Wise KAJ (1984) Additions to the collembolan fauna of the Antarctic. Trans R Soc Aust 108:203–205

    Google Scholar 

  • Greenslade P, Farrow RA, Smith JMB (1999) Long distance migration of insects to a subantarctic island. J Biogeogr 26:1161–1167

    Google Scholar 

  • Hansson LA, Hylander S, Dartnall HJG, Lidström S, Svensson JE (2012) High zooplankton diversity in the extreme environments of the McMurdo Dry Valley lakes, Antarctica. Antarct Sci 24:131–138

    Google Scholar 

  • Hawes TC, Worland MR, Convey P, Bale JS (2007) Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct Sci 19:3–10

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    PubMed  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond 270(Suppl 1):S96–S99

    CAS  Google Scholar 

  • Heyns J (1994) Chiloplacoides antarcticus n. gen., n. sp. from western Dronning Maud Land, Antarctica (Nematoda: Cephalobidae). Fundam Appl Nematol 17:333–338

    Google Scholar 

  • Hodgson DA, Noon PE, Vyverman W, Bryant CL, Gore DB, Appleby P, Gilmour M, Verleyen E, Sabbe K, Jones VJ, Ellis-Evans JC, Wood PB (2001) Were the Larsemann Hills ice-free through the last glacial maximum? Antarct Sci 13:440–454

    Google Scholar 

  • Hogg ID, Stevens MI (2002) Soil fauna of Antarctic coastal landscapes. In: Beyer L, Bolter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Ecol Stud 154:265–282

  • Holovachov O, Boström S (2006) Description of Acrobeloides arctowskii sp. n. (Rhabditida: Cephalobidae) from King George Island, Antarctica. Russ J Nematol 14:51–56

    Google Scholar 

  • Huiskes AHL, Convey P, Bergstrom DM (2006) Trends in Antarctic terrestrial and limnetic ecosystems. In: Bergstrom DM, Convey P,  Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 1–13

  • Ingole BS, Parulekar AH (1993) Limnology of freshwater lakes of Schirmacher Oasis, East Antarctica. Proc Indian Natl Sci Acad B 59:589–600

    Google Scholar 

  • Janiec K (1996) The comparison of freshwater invertebrates of Spitsbergen (Arctic) and King George Island (Antarctic). Pol Polar Res 17:173–202

    Google Scholar 

  • Ji Y et al (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257

    PubMed  Google Scholar 

  • Kinchin IM (1994) The biology of tardigrades. Portland Press Ltd, London, p 186

    Google Scholar 

  • Kirjanova ES (1958) Antarctic specimens of freshwater nematodes of the genus Plectus Bastian (Nematoda, Plectidae). Sov Antarct Exped Inf Bull 3:101–103

    Google Scholar 

  • Kito K, Ohyama Y (2008) Rhabditid nematodes found from a rocky coast contaminated with treated waste water of Casey Station in East Antarctica, with a description of a new species of Dolichorhabditis Andrássy, 1983 (Nematoda: Rhabditidae). Zootaxa 1850:43–52

    Google Scholar 

  • Kito K, Shishida Y, Ohyama Y (1991) Plectus antarcticus de Man, 1904 and P. frigophilus Kirjanova, 1958 (Nematoda: Plectidae), with emphasis on the male, from the Soya Coast, East Antarctica. Nematologica 37:252–262

    Google Scholar 

  • Kito K, Shishida Y, Ohyama Y (1996) New species of the genus Eudorylaimus Andrassy, 1959 (Nematoda: Qudsianematidae) from East Antarctica. Polar Biol 16:163–169

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclim Palaeoecol 198:11–37

    Google Scholar 

  • Lawver LA, Gahagan LM, Dalziel IWD (1998) A tight fit-Early Mesozoic Gondwana, a plate reconstruction perspective. Mem Natl Inst Polar Res Spec 53:214–229

    Google Scholar 

  • Marshall DJ, Pugh PJA (1996) Origin of the inland Acari of continental Antarctica, with particular reference to Dronning Maud Land. Zool J Linn Soc 118:101–118

    Google Scholar 

  • Maslen NR (1979) Additions to the nematode fauna of the Antarctic region with keys to taxa. Br Antarct Surv Bull 49:207–229

  • Maslen NR (1981) The Signy Island terrestrial reference sites: XII. Population ecology of nematodes with additions to the fauna. Br Antarct Surv Bull 53:57–75

  • Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151

    CAS  Google Scholar 

  • McInnes SJ (1995) Taxonomy and ecology of Tardigrades from Antarctic lakes. M Phil, Open University: 248

  • McInnes SJ (2010) Echiniscus corrugicaudatus (Heterotardigrada; Echiniscidae) a new species from Ellsworth Land, Antarctica. Polar Biol 33:59–70

    Google Scholar 

  • McInnes SJ, Pugh PJA (1998) Biogeography of limno-terrestrial Tardigrada, with particular reference to the Antarctic fauna. J Biogeogr 25:31–36

    Google Scholar 

  • McInnes SJ, Pugh PJA (2007) An attempt to revisit the global biogeography of limno-terrestrial Tardigrada. J Limnol 66:90–96

    Google Scholar 

  • Meldal BHM, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJD (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogen Evol 42:622–636

    CAS  Google Scholar 

  • Miller WR, Heatwole H (1995) Tardigrades of the Australian Antarctic Territories: the Mawson Coast, East Antarctica. Invertebr Biol 114:27–38

    Google Scholar 

  • Miller JD, Horne P, Heatwole H, Miller WR, Bridges L (1988) A survey of the terrestrial Tardigrada of the Vestfold Hills, Antarctica. Hydrobiologia 165:197–208

    Google Scholar 

  • Miller WR, Heatwole H, Pidgeon RWJ, Gardiner GR (1994) Tardigrades of the Australian Antarctic Territories: the Larsemann Hills, East Antarctica. Trans Am Microsc Soc 113:142–160

    Google Scholar 

  • Miller WR, Miller JD, Heatwole H (1996) Tardigrades of the Australian Antarctic Territories: the Windmill Islands, East Antarctica. Zool J Linn Soc 116:175–184

    Google Scholar 

  • Moore PD (2002) Biogeography: springboards for springtails. Nature 418:381

    PubMed  CAS  Google Scholar 

  • Morikawa K (1962) Notes on some Tardigrada from the Antarctic region. Biol Res Jpn Ant Res Exp 17:3–6

    Google Scholar 

  • Muñoz J, Felicisimo AM, Cabezas F, Burgaz AR, Martinez I (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–1147

    PubMed  Google Scholar 

  • Murray J (1910) Part III. Antarctic Rotifera. British Antarctic Expedition 1907–9, under the command of Sir EH Shackleton, cvo reports on the scientific investigations 1:41–65

  • Nedelchev S, Peneva V (2000) Description of three new species of the genus Mesodorylaimus Andrássy, 1959 (Nematoda: Dorylaimidae) from Livingston Island, Antarctica, with notes on M. imperator Loof, 1975. Russ J Nematol 8:161–172

    Google Scholar 

  • Nkem JN, Wall DH, Virginia RA, Barrett JE, Broos EJ, Porazinska DL, Adams BJ (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352

    Google Scholar 

  • Opalinski K (1972) Freshwater fauna and flora in Haswell island (Queen Mary Land, Eastern Antarctica). Pol Arch Hydrobiol 19:377–381

    Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507

    Google Scholar 

  • Peneva V, Chipev N (1999) Laimaphelenchus helicosoma (Maslen, 1979) n. comb. (Nematoda: Aphelenchida) from the Livingston Island (the Antarctic). Bulg Antarct Res 2:57–61

    Google Scholar 

  • Pilato G, Binda MG (1999) Three new species of Diphascon of the pingue group (Eutardigrada, Hypsibiidae) from Antarctica. Polar Biol 21:335–342

    Google Scholar 

  • Pilato G, McInnes SJ, Lisi O (2012) Hebesuncus mollispinus (Eutardigrada, Hypsibiidae), a new species from maritime Antarctica. Zootaxa 3446:60–68

    Google Scholar 

  • Prosser SWJ, Velarde-Aguilar MG, León-Règagnon V, Hebert PDN (2013) Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Mol Ecol Resour 13:1108–1115

    PubMed  CAS  Google Scholar 

  • Pugh PJA (1993) A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. J Nat Hist 27:323–421

    Google Scholar 

  • Pugh PJA, Convey P (2000) Scotia Arc Acari: antiquity and origin. Zool J Linn Soc 130:309–328

    Google Scholar 

  • Pugh PJA, Convey P (2008) Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J Biogeogr 35:2176–2186

    Google Scholar 

  • Robeson MS, Costello EK, Freeman KR, Whiting J, Adams B, Martin AP, Schmidt SK (2009) Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers. BMC Ecol 9:25

    PubMed  PubMed Central  Google Scholar 

  • Rounsevell DE, Horne PA (1986) Terrestrial, parasitic and introduced invertebrates of the Vestfold Hills. In: Pickard J (ed) Antarctic Oasis. Terrestrial environments and history of the Vestfold Hills. Academic Press Australia, Sydney, pp 309–331

    Google Scholar 

  • Ryss A, Boström S, Sohlenius B (2005) Tylenchid nematodes found on the nunatak Basen, East Antarctica. Ann Zool 55:315–324

    Google Scholar 

  • Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecol 8:7

    PubMed  PubMed Central  Google Scholar 

  • Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104

    Google Scholar 

  • Shishida Y, Ohyama Y (1986) A note on the terrestrial nematodes around Syowa station, Antarctica (extended abstract). Mem Natl Inst Polar Res, Spec Issue 44:259–260

    Google Scholar 

  • Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400

    Google Scholar 

  • Sinclair BJ, Stevens MI (2006) Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: implications of climate change. Soil Biol Biochem 38:3158–3170

    CAS  Google Scholar 

  • Smykla J, Porazinska DL, Iakovenko N, Janko K, Weiner WM, Niedbala W, Drewnik M (2010) Studies on Antarctic soil invertebrates: preliminary data on rotifers (Rotatoria), with notes on other taxa from Edmonson Point (Northern Victoria Land, Continental Antarctic). Acta Soc Zool Bohem 74:135–140

    Google Scholar 

  • Smykla J, Iakovenko N, Devetter M, Kaczmarek Ł (2012) Diversity and distribution of tardigrades in soils of Edmonson Point (Northern Victoria Land, continental Antarctica). Czech Polar Rep 2:61–70

    Google Scholar 

  • Sohlenius B (1989) Interactions between two species of Panagrolaimus in agar cultures. Nematologica 34:208–217

    Google Scholar 

  • Sohlenius B, Boström S (2005) The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biol 28:439–448

    Google Scholar 

  • Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–825

    Google Scholar 

  • Sohlenius B, Boström S, Hirschfelder A (1995) Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biol 15:51–56

    Google Scholar 

  • Sohlenius B, Boström S, Hirschfelder A (1996) Distribution patterns of microfauna (nematodes, rotifers and tardigrades) on nunataks in Dronning Maud Land, East Antarctica. Polar Biol 16:191–200

    Google Scholar 

  • Sohlenius B, Boström S, Jönsson KI (2004) Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia 48:395–408

    Google Scholar 

  • Spaull V (1973a) Distribution of nematode feeding groups at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. Br Antarct Surv Bull 37:21–32

  • Spaull V (1973b) Qualitative and quantitative distribution of soil nematodes of Signy Island, South Orkney Islands. Br Antarct Surv Bull 33:177–184

  • Stevens MI, D’Haese CA (2014) Islands in ice: isolated populations of Cryptopygus sverdrupi (Collembola) among nunataks in the Sør Rondane Mountains, Dronning Maud Land, Antarctica. Biodiversity. doi:10.1080/14888386.2014.928791

  • Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia 46:485–495

    Google Scholar 

  • Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369

    PubMed  CAS  Google Scholar 

  • Stevens MI, Hogg ID (2006a) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180

    CAS  Google Scholar 

  • Stevens MI, Hogg ID (2006b) The molecular ecology of Antarctic terrestrial and limnetic invertebrates and microbes. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 177–192

  • Stevens MI, Fjellberg A, Greenslade P, Hogg ID, Sunnucks P (2006a) Redescription of the Antarctic springtail Desoria klovstadi using morphological and molecular evidence. Polar Biol 29:820–830

    Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006b) Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    PubMed  CAS  Google Scholar 

  • Stevens MI, Porco D, D’Haese CA, Deharveng L (2011) Comment on “Taxonomy and the DNA barcoding enterprise” by Ebach (2011). Zootaxa 2838:85–88

    Google Scholar 

  • Sudzuki M (1964) On the microfauna of the Antarctic region. 1. Moss-water community at Langhovde. JARE Sci Rep 19:1–41

    Google Scholar 

  • Sudzuki M (1988) Comments on the antarctic Rotifera. Hydrobiologia 165:89–96

    Google Scholar 

  • Suren A (1990) Microfauna associated with algal mats in melt ponds of the Ross Ice Shelf. Polar Biol 10:329–335

    Google Scholar 

  • Terauds A, Chown SL, Morgan F, Peat HJ, Watts DJ, Keys H, Convey P, Bergstrom DM (2012) Conservation biogeography of the Antarctic. Divers Dist 18:726–741

    Google Scholar 

  • Timm RW (1971) Antarctic soil and freshwater nematodes from the McMurdo Sound region. Proc Helminthol Soc Wash 38:42–52

    Google Scholar 

  • Torricelli G, Carapelli A, Convey P, Nardi F, Boore JL, Frati F (2010) High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449:30–40

    PubMed  CAS  Google Scholar 

  • Tripati A, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346

    PubMed  CAS  Google Scholar 

  • Tsujimoto M, McInnes SJ, Convey P, Imura S (2014) Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biol. doi:10.1007/s00300-014-1516-8

  • Tumanov DV (2006) Five new species of the genus Milnesium (Tardigrada, Eutardigrada, Milnesiidae). Zootaxa 1122:1–23

    Google Scholar 

  • Utsugi K, Ohyama Y (1989) Antarctic tardigrada. Proc NIPR Symp Polar Biol 2:190–197

    Google Scholar 

  • Utsugi K, Ohyama Y (1991) Antarctic Tardigrada II. Molodezhnaya and Mt. Riiser-Larsen areas. Proc NIPR Symp Polar Biol 4:161–170

    Google Scholar 

  • Utsugi K, Ohyama Y (1993) Antarctic Tardigrada III. Fildes Peninsula of King George Island. Proc NIPR Symp Polar Biol 6:139–151

    Google Scholar 

  • Velasco-Castrillón A, Stevens MI (2014) Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biol Biochem 70:272–284

    Google Scholar 

  • Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, Stevens MI (2014a) Distribution and diversity of microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE 9:e87529

    PubMed  PubMed Central  Google Scholar 

  • Velasco-Castrillón A, Page TJ, Gibson JAE, Stevens MI (2014b) Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity 15:1–13

    Google Scholar 

  • Verlecar XN, Dhargalkar VK, Matondkar SGP (1996) Ecobiological studies of the freshwater lakes at Schirmacher Oasis, Antarctica. Sci Rep: Twelfth Indian Exp Antarct, Techn Publ 10: 233–257

  • Vincent WF, James MR (1996) Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers Conserv 5:1451–1471

    Google Scholar 

  • Wall DH (2007) Global change tipping points: above-and below-ground biotic interactions in a low diversity ecosystem. Phil Trans R Soc B 362:2291–2306

    PubMed  PubMed Central  Google Scholar 

  • Webster-Brown J, Gall M, Gibson J, Wood S, Hawes I (2010) The biogeochemistry of meltwater habitats in the Darwin Glacier region (80 S), Victoria Land, Antarctica. Antarct Sci 22:646–661

    Google Scholar 

  • Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B 173:621–628

    PubMed  CAS  Google Scholar 

  • Wise KAJ (1967) Collembola (springtails). Antarct Res Ser 10:123–148

    Google Scholar 

  • Yeates GW (1970) Two Terrestrial Nematodes from the McMurdo Sound Region, Antarctica, with a Note on Anaplectus arenicola Killick, 1964. J Helminthol 44:27–34

    Google Scholar 

  • Yeates GW (1979) Terrestrial nematodes from the Bunger Hills and Gaussberg, Antarctica. NZ J Zool 6:641–643

    Google Scholar 

Download references

Acknowledgments

We thank Dieter Piepenburg for editorial comments and two anonymous reviewers. In particular, we thank Dr. Sven Boström for providing a thorough review of the nematodes and Dr. Sandra McInnes for assisting with the tardigrades. We are grateful to the University of Adelaide (http://www.sciences.adelaide.edu.au/) for a PhD scholarship to AVC and the South Australian Museum Mawson Trust for providing funding for the Sir Douglas Mawson Doctoral Scholarship (http://www.samuseum.sa.gov.au/). This study was partially supported and funded by the Australian Antarctic Division (http://www.antarctica.gov.au/) Project (ASAC 2355 to MIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Velasco-Castrillón.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco-Castrillón, A., Gibson, J.A.E. & Stevens, M.I. A review of current Antarctic limno-terrestrial microfauna. Polar Biol 37, 1517–1531 (2014). https://doi.org/10.1007/s00300-014-1544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1544-4

Keywords

Navigation