Skip to main content
Log in

Investigation of blood parasites of pygoscelid penguins at the King George and Elephant Islands, South Shetlands Archipelago, Antarctica

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Parasites may adversely affect the breeding success and survival of penguins, potentially hampering the viability of their populations. We examined 161 pygoscelid penguins (3 Pygoscelis adeliae, 98 Pygoscelis antarcticus, and 60 Pygoscelis papua) at the South Shetlands Archipelago during the 2010–2011 summer; blood smears were examined for 64 penguins (2 P. adeliae, 18 P. antarcticus, and 44 P. papua), and a PCR test targeting Haemoproteus sp. and Plasmodium sp. was applied for 37 penguins (2 P. adeliae, 17 P. antarcticus, 19 P. papua). No blood parasites were observed, and all PCR tests were negative, leukocyte profiles were similar to those reported in other studies for wild pygoscelid penguins, and all penguins were in good body condition and had no external signs of disease. One specimen of chewing lice (Austrogoniodes sp.) was recorded in one P. antarcticus at King George Island. Ticks (Ixodes uriae) were not observed on the penguins, but were found on the ground near P. antarcticus nests at King George Island. The absence of avian blood parasites in Antarctic penguins is thought to result from the absence of competent invertebrate hosts in the climatic conditions. Predicted climate changes may redefine the geographic distribution of vector-borne pathogens, and therefore, the occurrence of blood parasites and their invertebrate hosts should be monitored regularly in Antarctic birds, particularly in the northernmost Antarctic Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Argilla LS, Howe L, Gartrell BD, Alley MR (2013) High prevalence of Leucocytozoon spp. in the endangered yellow-eyed penguin (Megadyptes antipodes) in the sub-Antarctic regions of New Zealand. Parasitology 140:672–682

    Article  CAS  PubMed  Google Scholar 

  • Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Av Med Surg 23:53–63

    Article  Google Scholar 

  • Barbosa A, Palacios MJ (2009) Health of Antarctic birds: a review of their parasites, pathogens and diseases. Polar Biol 32:1095–1115

    Article  Google Scholar 

  • Barbosa A, Benzal J, Vidal V et al (2011) Seabird ticks (Ixodes uriae) distribution along the Antarctic Peninsula. Polar Biol 34:1621–1624

    Article  Google Scholar 

  • Benning TL, LaPointe D, Atkinson CT, Vitousek PM (2002) Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modeling the fate of endemic birds using a geographic information system. PNAS 99:14246–14249

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AL (2010) Estudo de um Polimorfismo no Gene da Cadeia Pesada b da Miosina (CPbM). Universidade de Coimbra. https://woc.uc.pt/zoologia/getFile.do?tipo=2&id=5273. Acessed 11 June 2013

  • Clark P, Boardman W, Raidal S (2009) Atlas of clinical avian hematology. Blackwell, Oxford

    Google Scholar 

  • Clay T (1967) Mallophaga (biting lice) and Anoplura (sucking lice). Part I: Austrogoniodes (Mallophaga) parasitic of penguins (Sphenisciformes). In: Gressitt JL (ed) Entomology of Antarctica. American Geophysical Union, Washington, pp 149–155

    Google Scholar 

  • Clayton DH, Drown DM (2001) Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). J Parasitol 87:1291–1300

    CAS  PubMed  Google Scholar 

  • Earlé RA, Huchzermeyer FW, Bennett GF, Brossy JJ (1993) Babesia peircei sp. nov. from the Jackass Penguin. South Afr J Zool 28:88–90

    Google Scholar 

  • Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96:1197–1203

    Article  PubMed  Google Scholar 

  • Gauthier-Clerc M, Clerquin Y, Handrich Y (1998) Hyperinfestation by ticks Ixodes uriae: a possible cause of death in adult king penguins, a long-lived seabird. Colonial Waterbirds 21:229–233

    Article  Google Scholar 

  • Griner LA, Sheridan BW (1967) Malaria (Plasmodium relictum) in penguins at the San Diego Zoo. Am J Vet Clin Path 1:7–17

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Hawkey C, Samour HJ, Henderson GM, Hart MG (1985) Haematological findings in captive Gentoo Penguins (Pygoscelis papua) with bumblefoot. Avian Pathol 14:251–256

    Article  CAS  PubMed  Google Scholar 

  • Hawkey CM, Horsley DT, Keymer IF (1989) Haematology of wild penguins (Sphenisciformes) in the Falkland Islands. Avian Pathol 18:495–502

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  CAS  PubMed  Google Scholar 

  • International Species Information System (2002) Reference ranges for physiological data values. International Species Information System, Apple Valley

    Google Scholar 

  • Jones HI, Shellam GR (1999) Blood parasites in penguins, and their potential impact on conservation. Mar Ornithol 27:181–184

    Google Scholar 

  • Jones HI, Woehler EJ (1989) A new species of blood trypanosome from Little Penguins (Eudyptula minor) in Tasmania. J Protozool 36:389–390

    Article  Google Scholar 

  • Jovani R, Tella JL, Forero MG, Bertellotti M, Blanco G, Ceballos O, Donazar JÁ (2001) Apparent absence of blood parasites in the Patagonian seabird community: is it related to the marine environment? Waterbirds 24:430–433

    Google Scholar 

  • Laird M (1950) Some blood parasites of New Zealand. Zool Publ 5:1–20

    Google Scholar 

  • Levin II, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galápagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195

    Article  Google Scholar 

  • Mangin S, Gauthier-Clerc M, Frenot Y, Gendner JP, Le Maho Y (2003) Ticks Ixodes uriae and the breeding performance of a colonial seabird, king penguin Aptenodytes patagonicus. J Avian Biol 34:30–34

    Article  Google Scholar 

  • Martínez-Abraín A, Esparza B, Oro D (2004) Lack of blood parasites in bird species: does absence of blood parasite vectors explain it all? Ardeola 51:225–232

    Google Scholar 

  • Merino S, Barbosa A, Moreno J, Potti J (1997) Absence of haematozoa in a wild chinstrap penguin Pygoscelis antarctica population. Polar Biol 18:227–228

    Article  Google Scholar 

  • Merkel J, Jones HI, Whiteman NK et al (2007) Microfilariae in Galápagos Penguins (Spheniscus mendiculus) and Flightless Cormorants (Phalacrocorax harrisi). J Parasitol 93:492–503

    Google Scholar 

  • Olsén B, Duffy DC, Jaenson TGT, Gylfe A, Bonnedahl J, Bergström S (1995) Transhemispheric exchange of Lyme disease spirochetes by seabirds. J Clin Microbiol 33:3270–3274

    PubMed  PubMed Central  Google Scholar 

  • Palma RL (1978) Slide-mounting of lice: a detailed description of the Canada Balsam technique. New Zeal Entomol 6:432–436

    Article  Google Scholar 

  • Parsons NJ, Peirce MA, Strauss V (2010) New species of haematozoa in Phalacrocoracidae and Stercorariidae in South Africa. Ostrich 81:103–108

    Article  Google Scholar 

  • Peirce MA, Prince PA (1980) Hepatozoon albatrossi sp. nov. (Eucoccida: Hepatozoidae) from Diomedea spp. in the Antarctic. J Nat Hist 14:447–452

    Article  Google Scholar 

  • Quillfeldt P, Arriero E, Martínez J, Masello JF, Merino S (2011) Prevalence of blood parasites in seabirds—a review. Front Zool 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodhain J, Adrianne VF (1952) Deux nouveaux cas d’infestation par Plasmodium chez des pingouins. Annales Parasitologie Humaine et Comparée 32:573–577

    Google Scholar 

  • Rosenfeld G (1947) Corante pancrômico para hematologia e citologia clínica: Nova combinação dos componentes do May-Grunwald e do Giemsa num só corante de emprego rápido. Memórias Instituto Butantan 20:329–335

    Google Scholar 

  • Sambrook KJ, Russel DW, Sambrook J (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM et al (2003) Recent rapid regional climate warming on the Antarctic peninsula. Clim Chang 60:243–274

    Article  Google Scholar 

  • Vleck CM, Vertalino N, Vleck D, Bucher TL (2000) Stress, corticosterone and heterophil to lymphocyte rations in free-living Adelie penguins. Condor 102:392–400

    Google Scholar 

  • Woehler EJ (1993) The distribution and abundance of Antarctic and Subantarctic penguins. Scientific Committee on Antarctic Research, Cambridge

    Google Scholar 

  • Yabsley MJ, Parsons NJ, Horne EC, Shock BC, Purdee M (2012) Novel relapsing fever Borrelia detected in African penguins (Spheniscus demersus) admitted to two rehabilitation centers in South Africa. Parasitol Res 110:1125–1130

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by FAPESP (2009/53956-9, 2010/51801-5), MCT/CNPq (557049/2009-1), INCT-APA (CNPq 574018/2008-5, FAPERJ E-26/170.023/2008), Mount Sinai School of Medicine (Fogarty International Center 1D43TW00640) and supported by UNISINOS, UFRJ, ICB-USP, PROANTAR, MMA, MCTI, CIRM, and Marinha do Brasil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Eric Thijl Vanstreels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanstreels, R.E.T., Miranda, F.R., Ruoppolo, V. et al. Investigation of blood parasites of pygoscelid penguins at the King George and Elephant Islands, South Shetlands Archipelago, Antarctica. Polar Biol 37, 135–139 (2014). https://doi.org/10.1007/s00300-013-1401-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1401-x

Keywords

Navigation