Skip to main content

Advertisement

Log in

Mesozooplankton distribution patterns and grazing impacts of copepods and Euphausia crystallorophias in the Amundsen Sea, West Antarctica, during austral summer

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

An Erratum to this article was published on 12 June 2013

Abstract

The rapid melting of glaciers as well as the loss of sea ice in the Amundsen Sea makes it an ideal environmental setting for the investigation of the impacts of climate change in the Antarctic on the distribution and production of mesozooplankton. We examined the latitudinal distribution of mesozooplankton and their grazing impacts on phytoplankton in the Amundsen Sea during the early austral summer from December 27, 2010 to January 13, 2011. Mesozooplankton followed a latitudinal distribution in relation to hydrographic and environmental features, with copepods dominating in the oceanic area and euphausiids dominating in the polynya. Greater Euphausia crystallorophias biomass in the polynya was associated with lower salinity and higher food concentration (chlorophyll a, choanoflagellates, and heterotrophic dinoflagellates). The grazing impact of three copepods (Rhincalanus gigas, Calanoides acutus, and Metridia gerlachei) on phytoplankton was low, with the consumption of 3 % of phytoplankton standing stock and about 4 % of daily primary production. Estimated daily carbon rations for each of the three copepods were also relatively low (<10 %), barely enough to cover metabolic demands. This suggests that copepods may rely on food other than phytoplankton and that much of the primary production is channeled through microzooplankton. Daily carbon rations for E. crystallorophias were high (up to 49 %) with the grazing impact accounting for 17 % of the phytoplankton biomass and 84 % of primary production. The presence of E. crystallorophias appears to be a critical factor regulating phytoplankton blooms and determining the fate of fixed carbon in the coastal polynyas of the Amundsen Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arrigo KR, Alderkamp AC (2012) Shedding dynamic light on Fe limitation (DynaLiFe). Deep Sea Res II 71–76:1–4

    Article  Google Scholar 

  • Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynyas. J Geophys Res. doi:10.1029/2002JC001739

  • Arrigo KR, Lowry KE, van Dijken GL (2012) Annual change in sea ice and phytoplankton in polynyas of Amundsen Sea, Antarctica. Deep Sea Res II 71–76:5–15

    Article  Google Scholar 

  • Atkinson A (1995) Omnivory and feeding selectivity in five copepod species during spring in the Bellingshausen Sea, Antarctica. ICES J Mar Sci 52:385–396

    Article  Google Scholar 

  • Atkinson A (1996) Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar Ecol Prog Ser 130:85–96

    Article  Google Scholar 

  • Atkinson A (1998) Life cycles strategies of epipelagic copepods in the Southern Ocean. J Mar Syst 15:289–311

    Article  Google Scholar 

  • Atkinson A, Peck JM (1988) A summer-winter comparison of zooplankton in the oceanic area around South Georgia. Polar Biol 8:463–473

    Article  Google Scholar 

  • Atkinson A, Shreeve RS (1995) Response of the copepod community to a spring bloom in the Bellingshausen Sea. Deep Sea Res II 42:1291–1311

    Article  Google Scholar 

  • Atkinson A, Ward P, Williams R, Poulet SA (1992) Feeding rates and diel vertical migration of copepods near South Georgia: comparison of shelf and oceanic sites. Mar Biol 114:49–56

    Google Scholar 

  • Atkinson A, Shreeve RS, Pakhomov EA, Priddle J, Blight SP, Ward P (1996) Zooplankton response to a phytoplankton bloom near South Georgia, Antarctica. Mar Ecol Prog Ser 144:195–210

    Article  Google Scholar 

  • Atkinson A, Ward P, Hunt BPV, Pakhomov EA, Hosie GW (2012) An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. CCAMLR Sci 19:171–218

    Google Scholar 

  • Azzali M, Kalinowski J (2000) Spatial and temporal distribution of krill Euphausia superba biomass in the Ross Sea (1989–1990 and 1994). In: Faranda FM, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, Berlin, pp 433–455

    Chapter  Google Scholar 

  • Azzali M, Kalinowski J, Sala A, Catacchio S, Brancato G (2000) Evaluation of marine living resources in the Ross Sea (Krill, fish Minke whales and other Krill predator), their interactions and relations with the marine environment (ice-dynamic). In: Report of the Antarctic expedition during the Southern summer 1999/2000. Italian Antarctic Project, Ant 2000/01, Roma, Italy, pp 281–293

  • Azzali M, Leonori I, De Felice A, Russo A (2006) Spatial-temporal relationships between two euphausiid species in the Ross Sea. Chem Ecol 22:219–233

    Article  Google Scholar 

  • Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, London, pp 297–399

    Chapter  Google Scholar 

  • Bathmann UV, Makarov RR, Spiridonov VA, Rohardt G (1993) Winter distribution and overwintering strategies of the Antarctic copepod species Calanoides acutus, Rhincalanus gigas and Calanus propinquus (Crustacea, Calanoida) in the Weddell Sea. Polar Biol 13:333–346

    Article  Google Scholar 

  • Bathmann U, Priddle J, Treguer P, Lucas MI, Parslow J, Hall J (2000) Plankton ecology and biogeochemistry in the Southern Ocean: a first review of Southern Ocean JGOFS. In: Hanson R, Ducklow HW, Field JG (eds) The changing ocean carbon cycle: a mid-team synthesis of JGOFS. Cambridge University Press, UK

    Google Scholar 

  • Børsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters. Mar Ecol Prog Ser 36:171–175

    Article  Google Scholar 

  • Boysen-Ennen E, Hagen W, Hubold G, Piatkowski U (1991) Zooplankton biomass in the ice-covered Weddell Sea, Antarctica. Mar Biol 111:227–235

    Article  Google Scholar 

  • Cabal JA, Alvarez-Marqés F, Acuña JL, Quevedo M, Gonzalez-Quirós R, Huskin I, Fernández D, Valle CR, Anadón R (2002) Mesozooplankton distribution and grazing during the productive season in The Northwest Antarctic Peninsula (FRUELA cruises). Deep Sea Res II 49:869–882

    Article  Google Scholar 

  • Calbet A, Atienza D, Broglio E, Alcaraz M, Vaqué D (2006) Trophic ecology of Calanoides acutus in Gerlache Strait and Bellingshausen Sea waters (Antarctica, December 2002). Polar Biol 29:510–518

    Article  Google Scholar 

  • Carli A, Pane L, Stocchino C (2000) Planktonic copepods in Terra Nova Bay (Ross Sea): Distribution and relationship with environmental factors. In: Faranda FM, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, Berlin, pp 310–321

    Google Scholar 

  • Comiso JC, Maynard NG, Smith WO, Sullivan CW (1990) Satellite ocean colour studies of Antarctic ice edges in summer and autumn. J Geophys Res 95:9481–9496

    Article  Google Scholar 

  • Daly KL, Zimmerman JJ (2004) Comparisons of morphology and neritic distributions of Euphausia crystallorophias and Euphausia superba furcilia during autumn and winter west of the Antarctic Peninsula. Polar Biol 28:72–81

    Google Scholar 

  • Dam HG, Peterson WT (1988) The effect of temperature on the gut clearance rate constant of planktonic copepods. J Exp Mar Biol Ecol 123:1–14

    Article  Google Scholar 

  • Deibel D, Daly KL (2007) Zooplankton processes in Arctic and Antarctic polynyas. In: Smith WO Jr, Barber DG (eds) Polynyas, windows to the world. Elsevier, Oxford, pp 271–322

    Chapter  Google Scholar 

  • Donnelly J, Sutton TT, Torres JJ (2006) Distribution and abundance of micronekton and macrozooplankton in the NW Weddell Sea: relation to a spring ice-edge bloom. Polar Biol 29:280–293

    Article  Google Scholar 

  • Dubischar CD, Bathmann UV (1997) Grazing impact of copepods and salps on phytoplankton in Atlantic sector of the Southern Ocean. Deep Sea Res II 44:415–433

    Article  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Raymond CS, Stammerjohn SE, Vernet M, Fraser W (2012) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Trans R Soc B 362:67–94

    Article  Google Scholar 

  • Falk-Petersen S, Sargent JR, Lønne OJ, Tomofeev S (1999) Functional biodiversity of lipids in Antarctic zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biol 21:37–47

    Article  Google Scholar 

  • Fielding S, Ward P, Pollard RT, Seeyave S, Read JF, Hughes JA, Smith T, Castellani C (2007) Community structure and grazing impact of mesozooplankton during late spring/early summer 2004/2005 in the vicinity of the Crozet Islands (Southern Ocean). Deep Sea Res II 54:2106–2125

    Article  Google Scholar 

  • Fragoso GM, Smith WO (2012) Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. J Mar Syst 89:19–29

    Article  Google Scholar 

  • Guglielmo L, Donato P, Zagami G, Granata A (2009) Spatio-temporal distribution and abundance of Euphausia crystallorophias in Terra Nova Bay (Ross Sea, Antarctica) during austral summer. Polar Biol 32:347–367

    Article  Google Scholar 

  • Head EJH, Harris LR (1992) Chlorophyll and carotenoid transformation and destruction by Calanus spp. grazing on diatoms. Mar Ecol Prog Ser 86:229–238

    Article  CAS  Google Scholar 

  • Hernández-León S, Almeida C, Portillo-Hahnefeld A, Gómez M, Montero I (2000) Biomass and Potential feeding, respiration and growth of zooplankton in the Bransfield Strait (Antarctic Peninsula) during austral summer. Polar Biol 23:679–690

    Article  Google Scholar 

  • Hopkins TL, Landcraft TM, Torres JJ, Donnelly J (1993) Community structure and trophic ecology of zooplankton in the Scotia Sea marginal ice zone in winter (1988). Deep Sea Res I 40:81–105

    Article  Google Scholar 

  • Hosie GW (1994) The macrozooplankton communities in the Prydz Bay region, Antarctica. In: El-Sayed SZ (ed) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, pp 93–123

    Google Scholar 

  • Hosie GW, Ikeda T, Stolp M (1988) Distribution, abundance and population structure of the Antarctic krill (Euphausia superba Dana) in the Prydz Bay region, Antarctica. Polar Biol 8:213–224

    Article  Google Scholar 

  • Hosie GW, Schultz MB, Kitchener JA, Cochran TG, Richards K (2000) Macrozooplankton community structure off East Antarctica (80–150°E) during the austral summer of 1995/1996. Deep Sea Res II 47:2437–2463

    Article  Google Scholar 

  • Hunt BPV, Hosie GW (2005) Zonal structure of zooplankton communities in the Southern Ocean south of Australia: results from a 2150 km continuous plankton recorder transect. Deep Sea Res I 52:1241–1271

    Article  Google Scholar 

  • Hunt BPV, Hosie GW (2006) The seasonal succession of zooplankton in the Southern Ocean south of Australia, Part I: the seasonal ice zone. Deep Sea Res I 53:1182–1202

    Article  Google Scholar 

  • Jacobs SS, Comiso JC (1989) Sea ice and oceanic processes on the Ross Sea continental shelf. J Geophys Res 94:18195–18211

    Article  Google Scholar 

  • Jacobs SS, Comiso JC (1997) Climate variability in the Amundsen and Bellingshausen Seas. J Clim 10:697–709

    Article  Google Scholar 

  • Jacobs SS, Jenkins A, Giulivi CF, Dutrieux P (2011) Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat Geosci 4:519–523

    Article  CAS  Google Scholar 

  • Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR, Webb AT, White D (2010) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat Geosci 3:468–472

    Article  CAS  Google Scholar 

  • Kittel W, Ligowski R (1980) Algae found in the food of Euphausia crystallorophias (Crustacea). Pol Polar Res 1:129–137

    Google Scholar 

  • Lee SH, Kim BK, Yun SM, Yang EJ, Lee SH (2012) Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol. doi:10.1007/s00300-012-1220-5

  • Li C, Sun S, Zhang G, Ji P (2001) Summer feeding activities of zooplankton in Prydz Bay, Antarctica. Polar Biol 24:892–900

    Article  Google Scholar 

  • Mackas DL, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85

    Article  Google Scholar 

  • Massom RA, Stammerjohn SE (2010) Antarctic sea ice change and variability—physical and ecological implications. Polar Sci 4:149–186

    Article  Google Scholar 

  • Mayzaud P, Razouls S, Errhif A, Tirelli V, Labat JP (2002) Feeding, respiration and egg production rates of copepods during austral spring in the Indian sector of the Antarctic Ocean: role of the zooplankton community in carbon transformation. Deep Sea Res I 49:1027–1048

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms and other protest plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Moore JK, Abbott MR (2000) Phytoplankton chlorophyll distributions and primary production in the southern ocean. J Geophys Res 105:28709–28722

    Article  CAS  Google Scholar 

  • Murphy EJ, Cavanagh RD, Hofmann EE, Hill SL, Constable AJ, Costa DP, Pinkerton MH, Johnston NM, Trathan PN, Klinck JM, Wolf-Gladrow DA, Daly KL, Maury O, Doney SC (2012) Developing integrated models of Southern Ocean food webs: including ecological complexity, accounting for uncertainty and the importance of scale. Prog Oceanogr 102:74–92

    Article  Google Scholar 

  • Oksanen J (2008) Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

  • Pakhomov EA, Froneman PW (2004) Zooplankton dynamic in the eastern Atlantic sector of the Southern Ocean during the austral summer 1997/1998-Part 2: grazing impact. Deep Sea Res II 51:2617–2631

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R (1996) Antarctic neritic krill Euphausia crystallorophias: spatio-temporal distribution, growth and grazing rates. Deep Sea Res I 43:59–87

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R (1997) Spawning success and grazing impact of Euphausia crystallorophias in the Antarctic shelf region. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 187–192

    Google Scholar 

  • Pakhomov EA, Perissinotto R, Froneman PW (1998) Abundance and trophodynamics of Euphausia crystallorophias in the shelf region of the Lazarev Sea during austral spring and summer. J Mar Syst 17:313–324

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, McQuaid CD, Froneman PW (2000) Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in late austal summer 1993 Part 1. Ecological zonation. Deep Sea Res I 47:1663–1686

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 173

    Google Scholar 

  • Pasternak AF, Schnack-Schiel SB (2001) Feeding patterns of dominant Antarctic copepods: an interplay of diapause, selectivity, and availability of food. Hydrobiology 453(454):25–36

    Article  Google Scholar 

  • Perissinotto R, Pakhomov EA (1996) Gut evacuation rates and pigment destruction in the Antarctic krill Euphausia superba. Mar Biol 125:47–54

    Article  CAS  Google Scholar 

  • Perissinotto R, Pakhomov EA, McQuaid CD, Froneman PW (1997) In situ grazing rates and daily ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the Marginal Ice Zone. Mar Ecol Prog Ser 160:77–91

    Article  Google Scholar 

  • Pinkerton MH, Smith ANH, Raymond B, Hosie GW, Sharp B, Leathwick JR, Bradford-Grieve JM (2010) Spatial and seasonal distribution of adult Oithona similis in the Southern Ocean: predictions using boosted regression trees. Deep Sea Res I 57:469–485

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

  • Ross RM, Quetin LB, Martinson DG, Iannuzzi RA, Stammerjohn SE, Smith RC (2008) Palmer LTER: patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993–2004. Deep Sea Res II 55:2086–2105

    Article  Google Scholar 

  • Sala A, Azzali M, Russo A (2002) Krill of the Ross Sea: distribution, abundance and demography of Euphausia superba and Euphausia crystallorophias during the Italian Antarctic Expedition (January–February 2000). Sci Mar 66:123–133

    Article  Google Scholar 

  • SAS Institute Inc. (2005) SAS/STAT software, Version 9.1.3. SAS institute Inc. Cary, NC

  • Schoof C (2010) Beneath a floating ice shelf. Nat Geosci 3:450–451

    Article  CAS  Google Scholar 

  • Smith WO, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: a satellite perspective. J Geophys Res. doi:10.1029/2007JC004251

  • Smith WO, Gordon LI (1997) Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys Res Lett 24:233–236

    Article  Google Scholar 

  • Smith SL, Schnack-Schiel SB (1990) Polar zooplankton. In: Smith WO (ed) Polar oceanography. Academic Press, San Diego, pp 527–598

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. 2nd edn. Bull Fish Res Bd Can 167:1–310

    Google Scholar 

  • Sullivan CW, Arrigo KR, McClain CR, Comiso JC, Firestone J (1993) Distribution of phytoplankton blooms in the Southern Ocean. Science 262:1832–1837

    Article  PubMed  CAS  Google Scholar 

  • Swadling KM, Gibson JAE, Ritz DA, Nicols PD, Hughes DE (1997) Grazing of phytoplankton by copepods in eastern Antarctic coastal waters. Mar Biol 128:39–48

    Article  Google Scholar 

  • Swadling KM, Kawaguchi S, Hosie GW (2010) Antarctic mesozooplankton community structure during BROKE-West (30°E–80°E), January–February 2006. Deep Sea Res II 57:887–904

    Article  Google Scholar 

  • Takahashi KT, Hosie GW, Kitchener JA, McLeod DJ, Odate T, Fukuchi M (2010) Comparison of zooplankton distribution patterns between four seasons in the Indian Ocean sector of the Southern Ocean. Polar Sci 4:317–331

    Article  Google Scholar 

  • Tanimura A, Kawaguchi S, Oka N, Nishikawa J, Toczko S, Takahashi KT, Terazaki M, Odate T, Fukuchi M, Hosie G (2008) Abundance and grazing impacts of krill, salps and copepods along the 140°E meridian in the Southern Ocean during summer. Antarct Sci 20:365–379

    Article  Google Scholar 

  • Tirelli V, Mayzaud P (1999) Gut evacuation rates of Antarctic copepods during austral spring. Polar Biol 21:197–200

    Article  Google Scholar 

  • Urban-Rich J, Dagg M, Peterson J (2001) Copepod grazing on phytoplankton in the Pacific sector of the Antarctic polar front. Deep Sea Res II 48:4223–4246

    Article  CAS  Google Scholar 

  • Verity PG, Lagdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859–868

    Article  CAS  Google Scholar 

  • Wåhlin AK, Yuan X, Björk G, Nohr C (2010) Inflow of warm circumpolar deep water in the central Amundsen Shelf. J Phys Oceanogr 40:1427–1434

    Article  Google Scholar 

  • Walker DP, Brandon MA, Jenkins A, Allen JT, Dowdeswell JA, Evans J (2007) Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophys Res Lett. doi:10.1029/2006GL028154

  • Ward P, Grant S, Brandon M, Siegel V, Sushin V, Loeb V, Griffiths H (2004) Mesozooplankton community structure in the Scotia Sea during the CCAMLR 2000 survey: January–February 2000. Deep Sea Res II 51:1351–1367

    Google Scholar 

Download references

Acknowledgments

We thank the captain and crewmembers of the Korean Icebreaker R.V. Araon for their outstanding assistance during the cruise. We are deeply indebted to three anonymous reviewers, Drs. Hosie G., and Atkinson A. for their thoughtful suggestions, which helped to greatly improve the paper. This research was supported by Grant No. PE 11040 and Grant No. PP13020 from the Korea Polar Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Chul Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.B., Choi, K.H., Ha, H.K. et al. Mesozooplankton distribution patterns and grazing impacts of copepods and Euphausia crystallorophias in the Amundsen Sea, West Antarctica, during austral summer. Polar Biol 36, 1215–1230 (2013). https://doi.org/10.1007/s00300-013-1314-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1314-8

Keywords

Navigation