Skip to main content
Log in

Phytoplankton productivity and its response to higher light levels in the Canada Basin

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Phytoplankton productivity in the Canada Basin was measured in the late summer season, from mid-September to mid-October 2009, using a 13C–15N dual tracer technique. To understand potential production changes associated with sea ice melting in the Arctic Ocean, we examined the effects of light enhancement and nitrate enrichment on the carbon productivity of phytoplankton from the chlorophyll a maximum layer. The daily carbon productivity in the Canada Basin in 2009 was very low, with a mean of 4.1 mg C m−2 (SD = 3.6 mg C m−2), compared with those reported in previous studies in the region. Among several explanations, the most plausible reason for the large difference in carbon productivity between this and the previous studies was strong seasonal variation in biomass and photosynthetic rate of the phytoplankton in the study region. Based on our results from light enhancement and nitrate enrichment experiments, we found that carbon productivity of phytoplankton in the chlorophyll a maximum layer could be stimulated by increased light condition rather than nitrate addition. Thus, potentially increasing light availability from current and ongoing decreases in the sea ice cover could increase the carbon production of the phytoplankton in the chlorophyll a maximum layer and produce a well-developed maximum layer at a deeper depth in the Canada Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LG, Turner DB, Wedborg M, Dyrssen D (1999) Determination of total alkalinity and total dissolved inorganic carbon. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley-VCH, Weinheim, pp 127–148

    Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603. doi:10.1029/2008GL035028

    Google Scholar 

  • Barwell-Clarke J, Whitney F (1996) Institute of Ocean Sciences nutrient methods and analysis, vol 182. Canadian technical report of hydrography and ocean sciences, 43 pp

  • Bates NR, Mathis JT (2009) The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6:2433–2459

    CAS  Google Scholar 

  • Cai WJ et al (2010) Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean Basin. Science 329:556–559. doi:10.1126/science.1189338

    PubMed  CAS  Google Scholar 

  • Carmack EC, Macdonald RW (2002) Oceanography of the Canadian shelf of the Beaufort Sea: a setting for marine life. Arctic 55:29–45

    Google Scholar 

  • Carmack EC, McLaughlin FA (2011) Towards recognition of physical and geochemical change in Subarctic and Arctic Seas. Prog Oceanogr 90:90–104. doi:10.1016/j.pocean.2011.02.007

    Google Scholar 

  • Carmack EC, Macdonald RW, Perkin RG, McLaughlin FA, Pearson RJ (1995) Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larson-93 expedition. Geophys Res Lett 22:1061–1064. doi:10.1029/95GL00808

    Google Scholar 

  • Carmack EC, Macdonald RW, Jasper S (2004) Phytoplankton productivity on the Canadian shelf of the Beaufort Sea. Mar Ecol Prog Ser 277:37–50

    Google Scholar 

  • Codispoti LA, Flagg CN, Swift JH (2009) Hydrographic conditions during the 2004 SBI process experiments. Deep-Sea Res Part II 56:1144–1163

    CAS  Google Scholar 

  • Comiso JC (2006) Abrupt decline in the Arctic winter sea ice cover. Geophys Res Lett 33:L18504. doi:10.1029/2006GL027341

    Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972

    Google Scholar 

  • Cota GF, Pomeroy LR, Harrison WG, Jones EP, Peters F, Sheldon WM, Weingartner TR (1996) Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar Ecol Prog Ser 135:247–258

    Google Scholar 

  • Dortch Q, Postel JR (1989) Phytoplankton-nitrogen interactions. In: Landry MR, Hickey BM (eds) Coastal oceanography of Washington and Oregon. Elsevier, Amsterdam, pp 139–173

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    CAS  Google Scholar 

  • Dugdale RC, Wilkerson FP (1986) The use of 15N to measure nitrogen uptake in eutrophic oceans: experimental considerations. Limnol Oceanogr 31:673–689

    CAS  Google Scholar 

  • English TS (1961) Some biological oceanographic observations in the central North Polar Sea Drift Station Alpha, 1957–1958, vol 13. Research paper, Arctic Institute of North America, pp 1–80

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Google Scholar 

  • Fouilland E, Gosselin M, Rivkin RB, Vasseur C, Mostajir B (2007) Nitrogen uptake by heterotrophic bacteria and phytoplankton in Arctic surface waters. J Plankton Res 29:369–376

    CAS  Google Scholar 

  • Garneau MÈ, Gosselin M, Klein B, Tremblay JÉ, Fouilland E (2007) New and regenerated production during a late summer bloom in an Arctic polynya. Mar Ecol Prog Ser 345:13–26

    CAS  Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res Part II 44:1623–1644

    CAS  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Res Part II 56:1201–1212

    CAS  Google Scholar 

  • Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack EC, Cooper LW, Frey KE, Helle JH, MacLaughlin FA, McNutt SL (2006) A major ecosystem shift in the northern Bering Sea. Science 311:1461–1464

    PubMed  CAS  Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    CAS  Google Scholar 

  • Harrison WG, Cota GF (1991) Primary production in polar waters: relation to nutrient availability. Polar Res 10:87–104

    Google Scholar 

  • Hill V, Cota G, Stockwell D (2005) Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas. Deep-Sea Res Part II 52:3369–3385

    Google Scholar 

  • Jackson JM, Carmack EC, McLaughlin FA, Allen SE, Ingram RG (2010) Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J Geophys Res 115:C05021. doi:10.1029/2009JC005265

    Google Scholar 

  • Kanda J, Laws EA, Saino T, Hattori A (1987) An evaluation of isotope dilution effect from conventional data sets of 15N uptake experiments. J Plankton Res 9:79–90

    CAS  Google Scholar 

  • Kristiansen S, Farbrot T, Wheeler PA (1994) Nitrogen cycling in the Barents Sea-seasonal dynamics of new and regenerated production in the marginal ice zone. Limnol Oceanogr 39:1630–1642

    CAS  Google Scholar 

  • Lasternas S, Agustí S (2010) Phytoplankton community structure during the record Arctic ice-melting of summer 2007. Polar Biol 33:1709–1717

    Google Scholar 

  • Lee SH, Whitledge TE (2005) Primary and new production in the deep Canada Basin during summer 2002. Polar Biol 28:190–197

    Google Scholar 

  • Lee SH, Whitledge TE, Kang SH (2008) Carbon uptake rates of sea ice algae and phytoplankton under different light intensities in a landfast sea ice zone, Barrow, Alaska. Arctic 61:281–291

    Google Scholar 

  • Lee SH, Stockwell D, Whitledge TE (2010) Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Canada Basin in summer 2005. Polar Biol 33:1027–1036

    Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. doi:10.1126/science.1179798

    PubMed  CAS  Google Scholar 

  • Macdonald RW, Carmack EC, McLaughlin FA, Falkner KK (1999) Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophys Res Lett 26:2223–2226. doi:10.1029/1999GL900508

    CAS  Google Scholar 

  • MacIsaac J, Dugdale R (1972) Interaction of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Deep-Sea Res Part II 19:209–232

    CAS  Google Scholar 

  • McLaughlin FA, Carmack EC (2010) Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophys Res Lett 37:L24602. doi:10.1029/2010GL045459

    Google Scholar 

  • McLaughlin FA, Carmack EC, Macdonald RW, Melling H, Swift JH, Wheeler PA, Sherr BA, Sherr EB (2004) The juxtaposition of Atlantic and Pacific-origin waters in the Canada Basin, 1997–1998: a basin in transition. Deep-Sea Res Part I 51:107–128

    CAS  Google Scholar 

  • Melling H (1998) Hydrographic changes in the Canada Basin of the Arctic Ocean, 1979–1996. J Geophys Res 103:7637–7645. doi:10.1029/97JC03723

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York

    Google Scholar 

  • Pautzke CG (1979) Phytoplankton primary production below Arctic Ocean pack ice: an ecosystems analysis. PhD thesis, University of Washington

  • Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Annu Rev Mar Sci 1:417–441

    Google Scholar 

  • Rysgaard S, Nielsen TG, Hansen BW (1999) Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar Ecol Prog Ser 179:13–25

    CAS  Google Scholar 

  • Sakshaug E (1980) Problems in the methodology of studying phytoplankton. In: Morris I (ed) The physiological ecology of phytoplankton. University of California Press, Berkeley, pp 57–91

    Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in the Arctic seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 57–81

    Google Scholar 

  • Smith WO (1995) Primary productivity and new production in the Northeast Water (Greenland) Polynya during summer 1992. J Geophys Res 100:4357–4370. doi:10.1029/94JC02764

    CAS  Google Scholar 

  • Smith WO, Harrison WG (1991) New production in polar regions: the role of environmental controls. Deep-Sea Res Part I 38:1463–1479

    CAS  Google Scholar 

  • Smith WO, Sakshaug E (1990) Polar phytoplankton. In: Smith WO (ed) Polar oceanography, part B. Academic, San Diego, pp 477–525

    Google Scholar 

  • Swift JH, Jones EP, Aagaard K, Carmack EC, Hingston M, Macdonald RW, Mclaughlin FA, Perkin RG (1997) Waters of the Makarov and Canada basins. Deep-Sea Res Part II 44:1503–1529

    CAS  Google Scholar 

  • Tremblay JÉ, Legendre L, Klein B, Therriault JC (2000) Size-differential uptake of nitrogen and carbon in a marginal sea (Gulf of St. Lawrence, Canada): significance of diel periodicity and urea uptake. Deep-Sea Res Part II 47:489–518

    CAS  Google Scholar 

  • Tremblay JÉ, Gratton Y, Fauchot J, Price NM (2002) Climatic and oceanic forcing of new, net and diatom production in the North Water Polynya. Deep-Sea Res Part II 49:4927–4946

    CAS  Google Scholar 

  • Tremblay JÉ, Michel C, Hobson KA, Gosselin M, Price NM (2006) Bloom dynamics in early opening waters of the Arctic Ocean. Limnol Oceanogr 51:900–912

    CAS  Google Scholar 

  • Tremblay JÉ, Simpson K, Martin J, Miller L, Gratton Y, Barber D, Price NM (2008) Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J Geophys Res 113:C07S90. doi:10.1029/2007JC004547

    Google Scholar 

  • Zhao JP, Wang W, Cooper L (2010) Calculation of photosynthetically available radiation using multispectral data in the Arctic. Chin J Polar Sci 21:113–126

    Google Scholar 

Download references

Acknowledgments

We thank the captain and crew of the CCGS Louis S. St. Laurent for their outstanding assistance during the cruise. We also thank Dr. Kazutaka Tateyama for providing the sea ice data. We very much appreciate the constructive comments by three anonymous reviewers, which greatly improved the earlier version of the manuscript. This research was supported by grants from the Polar Academic Program (PAP) and the Korea Polar Research Institute (KOPRI; PM10040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang H. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, M.S., Chung, K.H., Zimmermann, S. et al. Phytoplankton productivity and its response to higher light levels in the Canada Basin. Polar Biol 35, 257–268 (2012). https://doi.org/10.1007/s00300-011-1070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1070-6

Keywords

Navigation