Skip to main content

Advertisement

Log in

The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Polar oceans are very susceptible to increased levels of atmospheric CO2 and may act as the world’s largest sink for anthropogenic CO2. Simultaneously, as atmospheric CO2 increases, sea surface temperature rises due to global warming. These two factors are important in regulating microalgal ecophysiology, and it has been suggested that future global changes may significantly alter phytoplankton species composition. This study aims to investigate potential consequences of global change in terms of increased temperature and CO2 enrichment on the benthic/sea ice diatom Navicula directa. In a laboratory experiment, the physiological response to elevated temperature and partial pressure of CO2 (pCO2) was investigated in terms of growth, photosynthetic activity and photosynthetic pigment composition. The experiment was performed under manipulated levels of pCO2 (380 and 960 ppm) and temperature (0.5 and 4.5°C) to simulate a change from present levels to predicted levels during a worst-case scenario by the year 2100. After 7 days of treatment, no synergetic effects between temperature and pCO2 were detected. However, elevated temperature promoted effective quantum yield of photosynthesis (∆F/\( F^\prime_{\rm m} \)) and increased growth rates by approximately 43%. Increased temperature also resulted in an altered pigment composition. In addition, enrichment of CO2 appeared to reduce specific growth rates of N. directa. Even though growth rates were only reduced by approximately 5%, we hereby report that increased pCO2 levels might also have potential negative effects on certain diatom strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banse K (1991) Rates of phytoplankton cell division in the field and in iron addition experiments. Limnol Oceanogr 36:1886–1898

    Article  CAS  Google Scholar 

  • Bates NR, Moran SB, Hansell DA, Mathis JT (2006) An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys Res Lett 33:1–7

    Article  Google Scholar 

  • Borges AV, Frankignoulle M (1999) Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. J Mar Syst 19:251–266

    Article  Google Scholar 

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596

    Article  PubMed  CAS  Google Scholar 

  • Brewer P, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117

    Article  CAS  Google Scholar 

  • Cai W-J, Chen L, Chen B, Gao Z, Lee SH, Chen J, Pierrot D, Sullivan K, Wang Y, Hu X, Huang W-J, Zhang Y, Xu S, Murata A, Grebmeier JM, Jones EP, Zhang H (2010) Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329:556–559

    Article  PubMed  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Chierici M, Fransson A (2009) CaCO3 saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves. Biogeosciences 6:2421–2432

    Article  CAS  Google Scholar 

  • Chierici M, Fransson A, Anderson LG (1999) Influence of m-cresol purple indicator additions on the pH of seawater samples: correction factors evaluated from a chemical speciation model. Mar Chem 65:281–290

    Article  CAS  Google Scholar 

  • Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res Part 1 Oceanogr Res Pap 40:2115–2129

    Article  CAS  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + OH2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part 1 Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Engel A, Delille B, Jacquet S, Riebesell U, Rochelle-Newall E, Terbrüggen A, Zondervan I (2004) Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquat Microb Ecol 34:93–104

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull Nat Ocean Atmos Adm 70:1063–1085

    Google Scholar 

  • Feng YY, Hare CE, Leblanc K, Rose JM, Zhang YH, DiTullio GR, Lee PA, Wilhelm SW, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar Ecol Prog Ser 388:13–25

    Article  CAS  Google Scholar 

  • Fransson A, Chierici M, Anderson LG (2004) Diurnal variabilityin the oceanic carbon dioxide system and oxygen in the Southern Ocean surface water. Deep Sea ResPart II 51:2827–2839

    Article  CAS  Google Scholar 

  • Fransson A, Chierici M, Nojiri Y (2009) New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean. Cont Shelf Res 29:1317–1328

    Article  Google Scholar 

  • Gattuso JP, Gao K, Lee K, Rost B, Schulz KG (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Gleitz M, Rutgers v.d. Loeff M, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91

    Article  CAS  Google Scholar 

  • Gleitz M, Kukert H, Riebesell U, Dieckmann GS (1996) Carbon acquisition and growth of Antarctic sea ice diatoms in closed bottle incubations. Mar Ecol Prog Ser 135:169–177

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 29–60

    Google Scholar 

  • Haraldsson C, Anderson LG, Hassellöv M, Hulth S, Olsson K (1997) Rapid, high-precision potentiometric titration of alkalinity in the ocean and sediment pore waters. Deep Sea Res Part I Oceanogr Res Pap 44:2031–2044

    Article  CAS  Google Scholar 

  • Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar Ecol Prog Ser 352:9–16

    Article  CAS  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FoMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. In: Proceedings of the national academy of sciences. doi:10.1073/pnas.1018062108

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M et al (eds) 4th assessment report. Cambridge University Press, Cambridge, pp 789–797

    Google Scholar 

  • Kim H-C, Lee K (2009) Significant contribution of dissolved organic matter to seawater alkalinity. Geophys Res Lett. doi: 10.1029/2009GL040271

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  PubMed  Google Scholar 

  • Kromkamp J, Peene J (1999) Estimation of phytoplankton photosynthesis and nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. Aquat Ecol 33:101–104

    Article  CAS  Google Scholar 

  • Leandro SM, Gil MC, Delgadillo I (2003) Partial characterisation of exopolysaccharides exudated by planktonic diatoms maintained in batch cultures. Acta Oecol 24:S49–S55

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon dioxide information analysis center, oak ridge national laboratory. US Department of Energy, Oak Ridge

    Google Scholar 

  • Rasmussen MB, Henriksen K, Jensen A (1983) Possible causes of temporal fluctuations in primary production of the microphytobenthos in the Danish Wadden Sea. Mar Biol 73:109–114

    Article  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  CAS  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  PubMed  CAS  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:1877–1882

    Article  Google Scholar 

  • Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43

    Article  Google Scholar 

  • Wolf-Gladrow D, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Ser B Chem Phys Meteorol 51:461–476

    Article  Google Scholar 

  • Wright S, Jeffrey S (1997) High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton. In: Jeffrey S, Mantoura R, Wright S (eds) Phytoplankton Pigments in Oceanography. UNESCO, Paris, pp 327–341

    Google Scholar 

  • Wulff A, Mohlin M, Sundbäck K (2007) Intraspecific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV-B radiation. Harm Algae 6:388–399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the Swedish Research Council (VR project #2007-8365 and #2009-2994), the YMER-80 and Kapten Carl Stenholm foundations. We are grateful to M. Appelgren for laboratory assistance and to Prof. A. Al-Handal for species identification of the culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Torstensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torstensson, A., Chierici, M. & Wulff, A. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa . Polar Biol 35, 205–214 (2012). https://doi.org/10.1007/s00300-011-1056-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1056-4

Keywords

Navigation