Skip to main content
Log in

Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: a case study on the Kerguelen archipelago

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Numerous ecological studies, including of the polar environment, are now using the remotely sensed normalized difference vegetation index (NDVI, e.g. PAL-NDVI or MODIS-NDVI) as a proxy of vegetation productivity rather than performing direct vegetation assessments. Even though previous data strongly suggested a saturation of NDVI at high biomass values, few studies have explicitly included this characteristic in the modelling process. Here, we developed a generalized non-linear model to explicitly model the relationship between temporal variations of NDVI (Pathfinder AVHRR Land 8 km dataset) and empirical field data. We illustrated our approach on the Kerguelen archipelago by using a green biomass index (point-intercept protocol) sampled at a small scale relative to PAL-NDVI data, and in presence of spatial (water) and temporal (cloud contamination, snow) heterogeneity, i.e. field conditions encountered in many ecological studies. We showed a strong relationship (r pred.obs = 0.89 [0.77; 0.95]95%) between this index and the seasonal component of NDVI time series (NDVIcomp). Despite the absence of lignified species in the stand, the NDVIcomp reached an asymptote (0.54 ± 0.05) for high values of green biomass index stressing the need to account for non-linearity when relating NDVI and plant measurements. We provided here a new methodological framework to standardize comparisons between studies assessing performance of NDVI as a proxy of vegetation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. National Oceanic and Atmospheric Administration.

  2. National Aeronautics and Space Administration.

References

  • Adrados C, Verheyden-Tixier H, Cargnelutti B, Pépin D, Janeau G (2003) GPS approach to study fine-scale site use by wild red deer during active and inactive behaviors. Wildl Soc Bull 31:544–552

    Google Scholar 

  • Agbu P, James M (1994) The NOAA/NASA Pathfinder AVHRR Land data set user’s manual. Goddard Distributed Active Archive Center Greenbelt, Maryland

  • Andersen R, Herfindal I, Sæther B.-E, Linnell J, Odden J, Liberg O (2004) When range expansion rate is faster in marginal habitats. Oikos 107:210–214

    Article  Google Scholar 

  • Aragón R, Oesterheld M (2008) Linking vegetation heterogeneity and functional attributes of temperate grasslands through remote sensing. Appl Veg Sci 11:117–130

    Article  Google Scholar 

  • Asrar G, Fuchs M, Kanemasu E, Hatfield J (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76:300–306

    Google Scholar 

  • Beck P, Atzberger C, Høgda K, Johansen B, Skidmore A (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100:321–334

    Article  Google Scholar 

  • Bliss C, Fisher R (1953) Fitting the negative binomial distribution to biological data. Biometrics 9:176–200

    Article  Google Scholar 

  • Boussès P (1991) Biologie de population d’un vertébré phytophage introduit, le lapin (Oryctolagus cuninculus) dans les îles subantarctiques de Kerguelen. Ph.D. thesis, Université de Rennes I, France

  • Box E, Holben B, Kalb V (1989) Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80:71–89

    Article  Google Scholar 

  • Brownrigg R (2007) mapdata: extra map databases (R code). R package version 2.0–22

  • Brownrigg R, Minka T (2007) maps: draw geographical maps (R code). R package version 2.0–38

  • Bråthen K, Hagberg O (2004) More efficient estimation of plant biomass. J Veg Sci 15:653–660

    Article  Google Scholar 

  • Bråthen K, Ims R, Yoccoz N, Fauchald P, Tveraa T, Hausner V (2007) Induced shift in ecosystem productivity? Extensive scale effects of abundant large herbivores. Ecosystems 10:773–789

    Article  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information–theoretical approach, 2nd edn. Springer, New York

    Google Scholar 

  • Chen J (1999) Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sens Environ 69:30–42

    Article  Google Scholar 

  • Diallo O, Diouf A, Hanan N, Ndiaye A, Prevost Y (1991) AVHRR monitoring of savanna primary production in Senegal, West Africa. 1987–1988. Int J Remote Sens 12:1259–1279

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the Bootstrap. volume 57 of monographs on statistics and applied probability

  • Forgeard F, Chapuis J-L (1984) Impact du lapin de garenne, Oryctolagus cuninculus, sur la végétation des pelouses incendiées de Paimpont (Ille-et-Vilaine, France). Acta Oecol 5:215–228

    Google Scholar 

  • Forster B (1984) Derivation of atmospheric correction procedures for LANDSAT MSS with particular reference to urban data. Int J Remote Sens 5:799–818

    Article  Google Scholar 

  • Frank D, McNaughton S (1990) Above-ground biomass estimation with the canopy intercept method—a plant-growth form caveat. Oikos 57:57–60

    Article  Google Scholar 

  • Garel M, Solberg E, Sæther B-E, Herfindal I, Høgda K (2006) The length of growing season and adult sex ratio affect sexual size dimorphism in moose. Ecology 87:745–758

    Article  PubMed  Google Scholar 

  • Gilabert M, Gandia S, Melia J (1996) Analyses of spectral-biophysical relationships for a corn canopy. Remote Sens Environ 55:11–20

    Article  Google Scholar 

  • Gong D, Ho C (2003) Detection of large-scale climate signals in spring vegetation index (Normalized Difference Vegetation Index) over the Northern Hemisphere. J Geophys Res 108:4498

    Article  Google Scholar 

  • Goward S, Tucker C, Dye D (1985) North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Plant Ecol 64:3–14

    Article  Google Scholar 

  • Guo W, Yang T, Dai J, Shi L, Lu Z (2008) Vegetation cover changes and their relationship to climate variation in the source region of the Yellow River, China, 1990–2000. Int J Remote Sens 29:2085–2103

    Article  Google Scholar 

  • Gutman G (1991) Vegetation indices from AVHRR—an update and future preospects. Remote Sens Environ 35:121–136

    Article  Google Scholar 

  • Hobbs T (1995) The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. Int J Remote Sens 16:1289–1302

    Article  Google Scholar 

  • Holben B (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Hope A, Engstrom R, Stow D (2005) Relationship between AVHRR surface temperature and NDVI in Arctic tundra ecosystems. Int J Remote Sens 26:1771–1776

    Article  Google Scholar 

  • Hunt E, Piper S, Nemani R, Keeling C, Otto R, Running S (1996) Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Glob Biogeo Cycles 10:431–456

    Article  CAS  Google Scholar 

  • Ibanez F, Grosjean P, Etienne M (2006) pastecs: package for analysis of space–time ecological series. R package version 1.3–4

  • Jia G, Epstein H, Walker D (2006) Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob Change Biol 12:42–55

    Article  Google Scholar 

  • Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101–106

    Article  Google Scholar 

  • Kendall M, Stuart A (1976) The advanced theory of statistics, vol 3. Design and analysis, and time-series. Griffin, London

    Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int J Remote Sens 11:2269–2279

    Article  Google Scholar 

  • Lobo A, Moloney K, Chic O, Chiariello N (2008) Analysis of fine-scale spatial pattern of a grassland from remotely–sensed imagery and field collected data. Landsc Ecol 13:111–131

    Article  Google Scholar 

  • Malinvaud E (1978) Méthodes statistiques de l’économétrie, 3rd edn. Bordas, Paris

    Google Scholar 

  • Manly B (1997) Randomization, Bootstrap and Monte Carlo Methods in biology. Chapman and Hall, London

    Google Scholar 

  • McNaughton S (1979) Grassland–herbivore dynamics. In: Serengeti (ed) Dynamics of an ecosystem. University of Chicago Press, Chicago, pp 46–81

  • Myneni R, Hall F, Sellers P, Marshak A (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Rem Sens 33:481–486

    Article  Google Scholar 

  • Mysterud A, Tryjanowski P, Panek M, Pettorelli N, Stenseth N (2007) Inter-specific synchrony of two contrasting ungulates: wild boar (Sus scrofa) and roe deer (Capreolus capreolus). Oecologia 151:232–239

    Article  PubMed  Google Scholar 

  • Osborne C (1991) Statistical calibration—a review. Int Stat Rev 59:309–336

    Article  Google Scholar 

  • Paruelo J, Epstein H, Lauenroth W, Burke I (1997) ANPP estimates from NDVI for the Central Grassland Region of the United States. Ecology 78:953–958

    Article  Google Scholar 

  • Penuelas J, Filella I (2001) Phenology—responses to a warming world. Science 294:793–794

    Article  PubMed  CAS  Google Scholar 

  • Persson P, Hallkonyves K, Sjostrom G, Pinzke S (1993) NOAA AVHRR data for crop productivity estimation in Sweden. Adv Space Res 13:111–116

    Article  Google Scholar 

  • Pettorelli N, Pelletier F, Von Hardenberg A, Festa-Bianchet M, Côté S (2007) Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology 88:381–390

    Article  PubMed  Google Scholar 

  • Pettorelli N, Vik J, Mysterud A, Gaillard J-M, Tucker C, Stenseth N (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria

  • Raynolds M, Comiso J, Walker D, Verbyla D (2008) Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens Environ 112:1884–1894

    Article  Google Scholar 

  • Reed B, Brown J, Vanderzee D, Loveland T, Merchant J, Ohlen D (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714

    Article  Google Scholar 

  • Ryan S, Knechtel C, Getz W (2007) Ecological cues, gestation length and birth timing in African Buffalo (Syncerus caffer). Behav Ecol 18:635–644

    Article  Google Scholar 

  • Schino G, Borfecchia F, De Cecco L, Dibari C, Iannetta M, Martini S, Pedrotti F (2003) Satellite estimate of grass biomass in a mountainous range in central Italy. Agrofor Syst 59:157–162

    Article  Google Scholar 

  • Seber G, Wild C (1989) Nonlinear regression. Wiley, New York

    Book  Google Scholar 

  • Sellers P, Heiser M, Hall F (1992) Relations between surface conductance and spectral vegetation indexes at intermediate (100 m2 to 15 km2) length scales. J Geophys Res 97:19033–19059

    Article  Google Scholar 

  • Sinclair T, Hoffer R, Schreiber M (1971) Reflectance and internal structure of leaves from several crops during a growing season. Agron J 63:864–868

    Article  Google Scholar 

  • Tixier H, Duncan P, Scehovic J, Yani A, Gleizes M, Lila M (1997) Food selection by European roe deer (Capreolus capreolus): effects of plant chemistry, and consequences for the nutritional value of their diets. J Zool (Lond) 242:229–245

    Google Scholar 

  • Tucker C (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Tucker C, Holben B, Elgin J (1981) Remote-sensing of total dry-matter accumulation in winter-wheat. Remote Sens Environ 11:171–189

    Article  Google Scholar 

  • Tucker C, Justice C, Prince S (1986) Monitoring the grasslands of the Sahel 1984–1985. Int J Remote Sens 7:1571–1581

    Article  Google Scholar 

  • Tucker C, Vanpraet C, Boerwinkel E, Gaston A (1983) Satellite remote-sensing of total dry-matter production in the Senegalese Sahel. Remote Sens Environ 13:461–474

    Article  Google Scholar 

  • Tucker C, Vanpraet C, Sharman M, Vanittersum G (1985) Satellite remote-sensing of total herbaceous biomass production in the Senegalese Sahel—1980–1984. Remote Sens Environ 17:233–249

    Article  Google Scholar 

  • Tukey J (1977) Exploratory data analysis. Addison-Wesley, Massachusetts

    Google Scholar 

  • Tveraa T, Fauchald P, Yoccoz N, Ims R, Aanes R, Høgda K (2007) What regulate and limit reindeer populations in Norway? Oikos 116:706–715

    Article  Google Scholar 

  • Venables W, Ripley B (2002) Modern applied statistics with S. Springer, New York

    Google Scholar 

  • Verbyla D (2008) The greening and browning of Alaska based on 1982–2003 satellite data. Glob Ecol Biogeogr 17:547–555

    Article  Google Scholar 

  • Waring R (1983) Estimating forest growth and efficiency in relation to canopy leaf-area. Adv Ecol Res 13:327–354

    Article  Google Scholar 

  • Wey W (1990) Time series analyses. Addison-Wesley, Massachusetts

    Google Scholar 

  • Wittemyer G, Rasmussen H, Douglas-Hamilton I (2007) Breeding phenology in relation to NDVI variability in free-ranging African elephant. Ecography 30:42–50

    Google Scholar 

Download references

Acknowledgments

We thank the French Polar Institute Paul-Emile Victor (IPEV) for financial support (programmes 279 and 136). Many thanks are due to J.-M. Gaillard, P. Aubry, R. Ecochard, M.-L. Delignette-Muller, I. Herfindal, J.-D. Lebreton, A. Avril and S. Hamel for their helpful suggestions on an earlier version of the manuscript. We also thank N. G. Yoccoz, S. Ryan and one anonymous referee for their comments that greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Santin-Janin.

Appendix

Appendix

This appendix describes the 3 steps of the statistical procedure used to compute prediction intervals of the model presented in this study (see Eqs. 2, 3),

Step 1: Computation of the mean model predictions

We obtained maximum likelihood estimation of {β0, β1, β1, θ} noted \(\{\hat{\beta_{0}},\hat{\beta_{1}},\hat{\beta_{1}}, \hat{\theta}\}\) and computed the means \((\hat{\mu}_{i})\) predicted by the fixed part of the model:

$$ y_i \sim {\text {NegBin}}(\hat{\mu}_{i},\hat{\theta}) $$
(6)

where

$$ \hat{\mu}_{i} = \hat{\beta}_{0} + {\frac{\hat{\beta}_{1}{\rm NDVI}_{i}} {\hat{\beta}_{2}-{\rm NDVI}_{i}}} $$
(7)

Step 2: Parametric bootstrapping of the fixed part of the model

We computed 1,000 vectors of bootstrap observations of length n = 27,

$$ Q^{{\ast}j} [\mu^{{\ast}j}_{1},\mu^{{\ast}j}_{i},\cdots,\mu^{{\ast}j}_{n},]_{(1 \leq j \leq 1,000)} $$
(8)

where each μ *j i was sampled in

$$ {\text {NegBin}}(\hat{\mu}_{i},\hat{\theta}) $$
(9)

We fitted the non-linear model (see Eq. 2) on each Q *j to obtain 1,000 bootstrap vectors of parameter estimations,

$$ \{\hat{\beta}^{{\ast}j}_{0},\hat{\beta}^{{\ast}j}_{1},\hat{\beta}^{{\ast}j}_{2},\hat{\theta}^{{\ast}j}\}_{(1 \leq j \leq 1,000)} $$
(10)

Using Eq. 7, we computed the 1,000 bootstrap vectors of predictions,

$$ \hat{P}^{{\ast}j} [\hat{\mu}^{{\ast}j}_{1},\hat{\mu}^{{\ast}j}_{i},\cdots,\hat{\mu}^{{\ast}j}_{n}]_{(1 \leq j \leq 1,000)} $$
(11)

Then, to compute the 95% bootstrap confidence intervals of the ith predicted mean \((\hat{\mu}_{i}),\) we have taken the 0.025 and 0.975 quantiles of the corresponding \(\hat{\mu}^{{\ast}}_{i}\) bootstrap distribution.

Step 3: Monte Carlo generation of the posterior distribution of individual predictions

In order to obtain the 95% prediction intervals, we included the random part of the model in the bootstrap procedure. Thus, we had a noise (Negative Binomial) to the 1000 bootstrap vectors of predicted means \((\hat{P}^{{\ast}j},\) see Eq. 11) to take into account the individual variability,

$$ \hat{P}^{{\ast}{\ast}j} [\hat{y}^{{\ast}j}_{1},\hat{y}^{{\ast}j}_{i},\cdots,\hat{y}^{{\ast}j}_{n}]_{(1 \leq j \leq 1,000)} $$
(12)

where each \(\hat{y}^{{\ast}j}_{i}\) (see Eq. 2) was sampled in

$$ {\text {NegBin}}(\hat{\mu}^{{\ast}j}_{i},\hat{\theta}^{{\ast}j}) $$
(13)

Then, to compute the 95% bootstrap prediction interval of the ith predicted observation \((\hat{y}_{i}),\) we took the 0.025 and 0.975 quantiles of the corresponding \(\hat{y}^{{\ast}}_{i}\) bootstrap distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santin-Janin, H., Garel, M., Chapuis, JL. et al. Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: a case study on the Kerguelen archipelago. Polar Biol 32, 861–871 (2009). https://doi.org/10.1007/s00300-009-0586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0586-5

Keywords

Navigation