Skip to main content

Advertisement

Log in

The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Southern Ocean is surprisingly rich in species that coexist in one of the most extreme environments on Earth yet the processes leading to speciation in this ecosystem are not well understood. To remedy this, tools that measure the genetic connectedness within a species are needed. Although useful for phylogenetic purposes, the readily available mitochondrial markers (e.g. 16S, COI) suffer from numerous shortcomings for population genetics. Therefore, molecular markers are needed that are sufficiently variable, unlinked, biparentally inherited, and distributed over the whole genome. We argue that microsatellites are suitable markers that have not been widely used in exploratory studies due to their difficult initial set-up. Working with the Ceratoserolis trilobitoides species complex (Isopoda), we demonstrate that using a novel protocol many microsatellites can be identified quickly. An increased availability of these highly sensitive markers will be useful for studies addressing the origin of species in the Southern Ocean and their response to future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abajian C (1994) Sputnik beta version 29 July 1994. http://www.espressosoftware.com/pages/sputnik.jsp

  • Aronson RB, Blake DB (2001) Global climate change and the origin of modern benthic communities in Antarctica. Am Zool 41:27–39

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Baltzer C, Held C, Waegele J-W (2000) Furcarcturus polarsterni gen. nov., sp. nov., a large deep-sea arcturid isopod from the Drake Passage, with a preliminary molecular characterization. Polar Biol 23:833–839

    Article  Google Scholar 

  • Bargelloni L, Zane L, Derome N, Lecointre G, Patarnello T (2000) Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. Antarct Sci 12:259–268

    Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Goswami U (1997) Molecular evidence for cryptic species among the Antarctic fish Trematomus bernachii and Trematomus hansoni. Antarct Sci 9:381–385

    Google Scholar 

  • Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B: Biochem Mol Biol 126:455–476

    Article  CAS  Google Scholar 

  • Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol, Annu Rev 21:241–453

    Google Scholar 

  • Clarke A, Aronson RB, Crame JA, Gil JM, Blake DB (2004) Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct Sci 16:559–568

    Article  Google Scholar 

  • Coyne JA, Orr HA (1998) The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci 353:287–305

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ellsworth LE, Rittenhouse KD, Honeycutt RL (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14:214–217

    PubMed  CAS  Google Scholar 

  • Gaffney PM (2000) Molecular tools for understanding population structure in Antarctic species. Antarct Sci 12:288–296

    Google Scholar 

  • Gray JS (2001) Antarctic marine benthic biodiversity in a world-wide latitudinal context. Polar Biol 24:633–641

    Article  Google Scholar 

  • Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci 16:11–16

    Article  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99

    Article  CAS  Google Scholar 

  • Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15:165–178

    Article  PubMed  CAS  Google Scholar 

  • Held C (2001) No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). Polar Biol 24:497–501

    Article  Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 135–139

    Google Scholar 

  • Held C, Wägele J-W (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181

    Article  Google Scholar 

  • Hoelzel AR, Natoli A, Dahlheim ME, Olavarria C, Baird RW, Black NA (2002) Low worldwide genetic diversity in the killer whale (Orcinus orca): implications for demographic history. Proc R Soc Lond B Biol Sci 269:1467–1473

    Article  Google Scholar 

  • Jarman SN (2001) The evolutionary history of krill inferred from nuclear large subunit rDNA sequence analysis. Biol J Linn Soc 73:199–212

    Article  Google Scholar 

  • Jarman SN, Elliott NG, Nicol S, McMinn A (2000) Molecular phylogenetics of circumglobal Euphausia species (Euphausiacea: Crustacea). Can J Fish Aquat Sci 57:51–58

    Article  CAS  Google Scholar 

  • Jarman SN, Elliott NG, Nicol S, McMinn A (2002) Genetic differentiation in the Antarctic coastal krill Euphausia crystallorophias. Heredity 88:280–287

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, Soller M (1999) Functional role of microsatellites and minisatellites. In: Goldstein DB, Schlötterer C (eds) Microsatellites. Evolution and applications. Oxford University Press, New York, pp 10–23

    Google Scholar 

  • Lecointre G, Bonillo C, Ozouf-Costaz C, Hureau J-C (1997) Molecular evidence for the origins of Antarctic fishes: paraphyly of the Bovichtidae and no indication for the monophyly of the Notothenioidei (Teleostei). Polar Biol 18:193–208

    Article  Google Scholar 

  • Lee YH, Song M, Lee S, Leon R, Godoy SO, Canete I (2004) Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins. Antarct Sci 16:29–36

    Article  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  • Loerz AN, Held C (2004) A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphipoda). Mol Phylogenet Evol 31:4–15

    Article  CAS  Google Scholar 

  • Lunt DH, Hutchinson WF, Carvalho GR (1999) An efficient method for PCR-based isolation of microsatellite arrays (PIMA). Mol Ecol 8:891–893

    Article  CAS  Google Scholar 

  • Near TJ (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct Sci 16:37–44

    Article  Google Scholar 

  • Near TJ, Pesavento JJ, Cheng CHC (2003) Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Mol Phylogenet Evol 28:87–98

    Article  PubMed  CAS  Google Scholar 

  • Near TJ, Pesavento JJ, Cheng CHC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891

    Article  PubMed  CAS  Google Scholar 

  • Nolte AW, Stemshorn KC, Tautz D (2005) Direct cloning of microsatellite loci from Cottus gobio through a simplified enrichment procedure. Mol Ecol Notes 5:628–636

    CAS  Google Scholar 

  • Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826

    Google Scholar 

  • Patarnello T, Bargelloni L, Varotto V, Battaglia B (1996) Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol 126:603–608

    Article  Google Scholar 

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Perez T, Albornoz J, Dominguez A (1998) An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198

    Article  Google Scholar 

  • Raupach MJ, Held C, Wagele JW (2004) Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep-Sea Res (2 Top Stud Oceanogr) 51:1787–1795

    Article  CAS  Google Scholar 

  • Reilly A, Ward RD (1999) Microsatellite loci to determine population structure of the Patagonian toothfish Dissostichus eleginoides. Mol Ecol 8:1753–1754

    Article  PubMed  CAS  Google Scholar 

  • Ritchie PA, Bargelloni L, Meyer A, Taylor JA, MacDonald JA, Lambert DM (1996) Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Mol Phylogenet Evol 5:383–390

    Article  PubMed  CAS  Google Scholar 

  • Ritchie PA, Lavoue S, Lecointre G (1997) Molecular phylogenetics and the evolution of Antarctic Notothenioid fishes. Comp Biochem Physiol A: Physiol 118:1009–1025

    Article  CAS  Google Scholar 

  • Roeder AD, Marshall RK, Mitchelson AJ, Visagathilagar T, Ritchie PA, Love DR, Pakai TJ, McPartlan HC, Murray ND, Robinson NA, Kerry KR, Lambert DM (2001) Gene flow on the ice: genetic differentiation among Adelie penguin colonies around Antarctica. Mol Ecol 10:1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Roman J, Palumbi SR (2004) A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol 13:2891–2898

    Article  PubMed  CAS  Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  CAS  Google Scholar 

  • Shaw PW, Arkhipkin AI, Al Khairulla H (2004) Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Mol Ecol 13:3293–3303

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Stankovic A, Spalik K, Kamler E, Borsuk P, Weglenski P (2002) Recent origin of sub-Antarctic notothenioids. Polar Biol 25:203–205

    Google Scholar 

  • Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74

    Article  Google Scholar 

  • Thatje S, Hillenbrand CD, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  PubMed  Google Scholar 

  • Valsecchi E, Palsboll P, Hale P, Glockner-Ferrari D, Ferrari M, Larsen F, Mattila D, Sears R, Sigurjonsson J, Brown M, Corkeron P, Amos B (1997) Microsatellite genetic distances between oceanic populations of the humpback whale (Megaptera novaeangliae). Mol Biol Evol 14:355–362

    PubMed  CAS  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Zane L, Patarnello T (2000) Krill: a possible model for investigating the effects of ocean currents on the genetic structure of a pelagic invertebrate. Can J Fish Aquat Sci 57:16–23

    Article  Google Scholar 

  • Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T (1998) Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) populations. Proc R Soc Lond B Biol Sci 265:2387–2391

    Article  CAS  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Arne Nolte (University of Cologne) provided his microsatellite protocol ahead of print and offered valuable assistance during the initial test phase in the lab. For computational assistance and the development of the powerful computer programs “Phobos” and “ssr-stat” we thank Christoph Mayer (University of Bochum). Wolfgang Wägele (Museum Koenig, Bonn) discussed various aspects of the project with us. We also thank Joseph Eastman, Sven Thatje, and one anonymous reviewer for valuable comments and suggestions on the manuscript. This work was supported by the DFG grant He 3391/3 to Christoph Held (AWI Bremerhaven) and in part by NSF grant OPP 01-32032 to H. William Detrich (Northeastern University, Boston, USA). This is publication number 11 from the ICEFISH Cruise of 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Held.

Additional information

Christoph Held and Florian Leese contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Held, C., Leese, F. The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30, 513–521 (2007). https://doi.org/10.1007/s00300-006-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0210-x

Keywords

Navigation