Skip to main content
Log in

Relationships between sea ice concentration, sea surface temperature and demographic traits of thin-billed prions

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Understanding the effects of environmental variations on ecosystems is a major topic in ecology. In this study, we estimated demographic parameters of a seabird population, the thin-billed prion (Pachyptila belcheri) at Kerguelen Islands, and then tested for relationships with inter-annual variations of climatic indices, using long-term capture–recapture data. The annual adult survival probability was 0.825±0.009 and the breeding success was 0.519±0.090. Sea surface temperature anomalies were negatively related with breeding success. By contrast, winter sea ice concentration in the Antarctic seasonal ice zone seemed to negatively influence adult survival. This suggests a connection between sub-Antarctic and Antarctic ecosystems. The actual context of large climatic changes in the Austral Ocean seems to explain a large part of the decreasing trends observed for both the breeding success and the adult survival. Thus, a decrease of the population size of thin-billed prions at Kerguelen could be strongly suspected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DR, Burnham KP (1999) General strategies for the analysis of ringing data. Bird Study 46:S261–S270

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2001a) Contrasting effects of the extent of sea-ice on the breeding performance of an Antarctic top predator, the Snow Petrel Pagodroma nivea. J Avian Biol 32:297–302

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2001b) Emperor penguins and climate change. Nature 411:183–186

    Article  PubMed  CAS  Google Scholar 

  • Barbraud C, Weimerskirch H (2003) Climate and density shape population dynamics of a marine top predator. Proc R Soc Lond B 270:2111–2116

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoric approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Chastel O, Weimerskirch H, Jouventin P (1995a) Body condition and seabird reproductive performance: a study of three petrel species. Ecology 76:2240–2246

    Article  Google Scholar 

  • Chastel O, Weimerskirch H, Jouventin P (1995b) Influence of body condition on reproductive decision and reproductive success in the blue petrel. Auk 112:964–972

    Google Scholar 

  • Chaurand T, Weimerskirch H (1994) Incubation routine, body mass regulation and egg neglect in the Blue Petrel Halobaena caerulea. Ibis 136:285–290

    Article  Google Scholar 

  • Cherel Y, Bocher P, De Broyer C, Hobson KA (2002) Food and feeding ecology of the sympatric thin-billed Pachyptila belcheri and the Antarctic P. desolata prions at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:263–281

    Article  Google Scholar 

  • Choquet R, Reboulet AM, Pradel R, Gimenez O, Lebreton JD (2003) User’s manual for U-Care. Mimeographed document, CEFE/CNRS, Montpellier. (ftp://ftp.cefe.cnrs-mop.fr/biom/Soft-CR/)

  • Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird population. Science 297:1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Curran MA, van Ommen TD, Morgan VI, Phillips KL, Palmer AS (2003) Ice core evidence for Antarctic sea ice decline since the 1950s. Science 302:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Fraser WR, Hofmann EE (2003) A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar Ecol Prog Ser 265:1–15

    Article  Google Scholar 

  • Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, Princeton

    Google Scholar 

  • Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277

    Article  PubMed  CAS  Google Scholar 

  • Goodman D (1974) Natural selection and a cost ceiling on reproductive effort. Am Nat 108:247–268

    Article  Google Scholar 

  • Guinet C, Chastel O, Koudil M, Durbec JP, Jouventin P (1998) Effects of warm sea-surface temperature anomalies on the blue petrel at the Kerguelen Islands. Proc R Soc Lond B 265:1001–1006

    Article  Google Scholar 

  • Hayward TL (1997) Pacific Ocean climate change: atmospheric forcing, ocean circulation and ecosystem response. Trends Ecol Evol 12:150–154

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Inchausti P, Guinet C, Koudil M, Durbec J-P, Barbraud C, Weimerskirch H, Cherel Y, Jouventin P (2003) Inter-annual variability in the breeding performance of seabirds in relation to oceanographic anomalies that affect the Crozet and the Kerguelen sectors of the Southern Ocean. J Avian Biol 34:170–176

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: synthesis report. Cambridge University Press, Cambridge

  • Jenouvrier S, Barbraud C, Weimerskirch H (2003) Effects of climate variability on the temporal population dynamics of southern fulmars. J Anim Ecol 72(4):576–587

    Article  Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  • Lebreton JD, Clobert J (1991) Bird population dynamics, management, and conservation: the role of mathematical modelling. In: Perrins CM, Lebreton JD, Hirons GJM (eds) Bird population studies, relevance to conservation and management. Oxford University Press, Oxford, pp 105–125

    Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    Article  CAS  Google Scholar 

  • Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Article  CAS  Google Scholar 

  • Marchant S, Higgins PJ (1990) Procellariidae, Pachyptila belcheri. Handbook of Australian, NewZealand & Antarctic birds—ratites to ducks. Oxford University Press, Oxford, pp 529–534

    Google Scholar 

  • McGowan JA, Cayan DR, Dorman LM (1998) Climate-ocean variability and ecosystem response in the Northeast Pacific. Science 281:210–217

    Article  PubMed  CAS  Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oceanologia 128:1–14

    Article  Google Scholar 

  • Parkinson CL (1998) Length of the sea ice season in the Southern Ocean, 1988–1994. Ant Res Ser 74:173–186

    Google Scholar 

  • Pinaud D, Weimerskirch H (2002) Ultimate and proximate factors affecting the breeding performance of a marine top-predator. Oïkos 99:141–150

    Google Scholar 

  • Pradel R (1993) Flexibility in survival analysis from recapture data: Handling trap-dependence. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird population. Birkhaüser Verlag, Basel, Switerzland pp29–37

    Google Scholar 

  • Quillfeldt P, Masello JF, Strange IJ (2003) Breeding biology of the thin-billed prion Pachyptila belcheri at New Island, Falkland Islands: egg desertion, breeding success and chick provisioning in the poor season 2002/2003. Polar Biol 26:746–752

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses. J Climate 7:929–948

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosensweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Google Scholar 

  • Sæther B-E, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Adv Ecol Res 35:185–209

    Article  Google Scholar 

  • Schreiber EA, Burger J (2001) Biology of marine birds. CRC Press, Boca Raton

    Google Scholar 

  • Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042

    Article  PubMed  CAS  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K-S, Yoccoz NG, Ådlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B 270:2087–2096

    Article  Google Scholar 

  • Strange IJ (1980) The thin-billed prion, Pachyptila belcheri, at New Island, Falkland Islands. Gerfaut 70:411–445

    Google Scholar 

  • Sun L, Lui X, Yin X, Zhu R, Xie Z, Wang Y (2004) A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biol 27:495–501

    Article  Google Scholar 

  • Thompson PM, Ollason JC (2001) Lagged effects of ocean climate change on fulmar population dynamics. Nature 413:417–420

    Article  PubMed  CAS  Google Scholar 

  • Trathan PN, Croxall JP, Murphy EJ (1996) Dynamics of Antarctic penguin populations in relation to inter-annual variability in sea ice distribution. Polar Biol 16:321–330

    Article  Google Scholar 

  • Veit RR, McGowan JA, Ainley DG, Wahls TR, Pyle P (1997) Apex marine top predator declines ninety percent in association with changing oceanic climate. Global Change Biol 3:23–28

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Warham J (1990) The petrels. Their ecology and breeding systems. Academic, London

    Google Scholar 

  • Weimerskirch H, Zotier R, Jouventin P (1989) The Avifauna of the Kerguelen Islands. Emu 89:15–19

    Article  Google Scholar 

  • White CG, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study (Suppl 1):S120–S139

  • Wilkinson L (1996) SYSTAT 6.0 for Windows: statistics. SYSTAT Inc., Chicago

    Google Scholar 

  • Wilson C, Adamec D (2002) A global view of bio-physical coupling from SeaWiFS and TOPEX satellite data, 1997–2001. Geophys Res Lett 29:1–4

    Google Scholar 

  • Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106

    Article  Google Scholar 

  • Woehler EJ, Hodges CL, Watts DJ (1991) An atlas of the pelagic distribution and abundance of seabirds in the southern Indian Ocean, 1981 to 1990. Australian Antarctic Division, Kingston

    Google Scholar 

  • Xie S-P, Annamalai H (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15:864–878

    Article  Google Scholar 

Download references

Acknowledgements

We particularly thank all the field workers involved in the monitoring of thin-billed prions on Mayes Island without whom this study could not have been possible. We thank H. Weimerskirch for managing the long-term studies at Kerguelen, D. Besson for data processing, and G. Beauplet, M. Frederiksen, I. Hempel, P. Quillfeldt and two anonymous referees for helpful comments on the manuscript. This study is a part of the program no. 109 supported by the Institut Paul Emile Victor and by the Terres Australes et Antarctiques Françaises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Nevoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevoux, M., Barbraud, C. Relationships between sea ice concentration, sea surface temperature and demographic traits of thin-billed prions. Polar Biol 29, 445–453 (2006). https://doi.org/10.1007/s00300-005-0075-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-005-0075-4

Keywords

Navigation