Skip to main content

Advertisement

Log in

Consumer acceptance of food crops developed by genome editing

  • Opinion Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

One of the major problems regarding consumer acceptance of genetically modified organisms (GMOs) is the possibility that their transgenes could have adverse effects on the environment and/or human health. Genome editing, represented by the CRISPR/Cas9 system, can efficiently achieve transgene-free gene modifications and is anticipated to generate a wide spectrum of plants. However, the public attitude against GMOs suggests that people will initially be unlikely to accept these plants. We herein explored the bottlenecks of consumer acceptance of transgene-free food crops developed by genome editing and made some recommendations. People should not pursue a zero-risk bias regarding such crops. Developers are encouraged to produce cultivars with a trait that would satisfy consumer needs. Moreover, they should carefully investigate off-target mutations in resultant plants and initially refrain from agricultural use of multiplex genome editing for better risk–benefit communication. The government must consider their regulatory status and establish appropriate regulations if necessary. The government also should foster communication between the public and developers. If people are informed of the benefits of genome editing-mediated plant breeding and trust in the relevant regulations, and if careful risk–benefit communication and sincere considerations for the right to know approach are guaranteed, then such transgene-free crops could gradually be integrated into society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149

    Article  CAS  PubMed  Google Scholar 

  • Araki M, Nojima K, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32:234–237

    Article  CAS  PubMed  Google Scholar 

  • Barfoot P, Brookes G (2014) Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops Food 5:149–160

    Article  PubMed  Google Scholar 

  • Bartholomaeus A, Parrott W, Bondy G, Walker K (2013) The use of whole food animal studies in the safety assessment of genetically modified crops: limitations and recommendations. Crit Rev Toxicol 43(Suppl 2):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2012) GM crops: global socio-economic and environmental impacts 1996–2010. PG Economics Ltd., UK

    Google Scholar 

  • Burgos NR, Singh V, Tseng TM, Black H, Young ND, Huang Z, Hyma KE, Gealy DR, Caicedo AL (2014) The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice. Plant Physiol 166:1208–1220

    Article  PubMed  PubMed Central  Google Scholar 

  • Busconi M, Rossi D, Lorenzoni C, Baldi G, Fogher C (2012) Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of clearfield rice cultivation in Italy. Plant Biol (Stuttgart, Germany) 14:751–759

    Article  CAS  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho A, Van Deynze A, Chi-Ham C, Bennett AB (2014) Genetically engineered crops that fly under the US regulatory radar. Nat Biotechnol 32:1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Center_for_Food_Safety (2015) Environmental, Farmer, and Consumer Groups Demand Higher Standards for Genetically Engineered (GE) Crop Regulations. http://www.centerforfoodsafety.org/press-releases/3967/environmental-farmer-and-consumer-groups-demand-higher-standards-for-genetically-engineered-ge-crop-regulations. Accessed 19 Feb 2016

  • Chen H, Lin Y (2013) Promise and issues of genetically modified crops. Curr Opin Plant Biol 16:255–260

    Article  PubMed  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339:819–823

    Article  CAS  Google Scholar 

  • Davidson J (2010) GM plants: science, politics and EC regulations. Plant Sci 178:94–98

    Article  Google Scholar 

  • EFSA_GMO_Panel_Working_Group_on_Animal_Feeding_Trials (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 46:S2–S70

    Google Scholar 

  • European_Academies’_Science_Advisory_Council (2015) Statement: New breeding techniques. http://www.easac.eu/fileadmin/PDF_s/reports_statements/Easac_14_NBT.pdf. Accessed 7 Mar 2016

  • European_Plant_Science_Organisation (2015) Statement: Crop Genetic Improvement Technologies. http://www.epsoweb.org/file/2147. Accessed 7 Mar 2016

  • European_Seed_Association (2015) Regulatory approaches to modern plant breeding - the case of mutagenesis and new gene editing technologies. https://www.euroseeds.eu/system/files/publications/files/esa_15.0543_0.pdf. Accessed 7 Mar 2015

  • Friedman M, Rasooly R (2013) Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins 5:743–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GM_Freeze (2016) The case for regulating Gene Edited crops. http://www.gmfreeze.org/news-releases/266/. Accessed 7 Mar 2016

  • GMWATCH (2014) “Genome editing”: GM by another name. http://www.gmwatch.org/news/archive/2014/15546-genome-editing-gm-by-another-name. Accessed 19 Feb 2016

  • Green_Peace (2015) Policy briefing Gene-editing of plants—GM through the back door? http://www.greenpeace.org/eu-unit/Global/eu-unit/reports-briefings/2015/Greenpeace_Gene-editing_30112015%20-%202.pdf. Accessed 4 Mar 2016

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J Cell Mol Biol 78:742–752

    Article  CAS  Google Scholar 

  • Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P (2015) Plant exomics: concepts, applications and methodologies in crop improvement. Plant Signal Behav 10:e976152

    Article  PubMed  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48:109–111

    Article  CAS  PubMed  Google Scholar 

  • IFOAM_EU (2015) New Plant Breeding Techniques Position paper. http://www.ifoam-eu.org/sites/default/files/ifoameu_policy_npbts_position_final_20151210.pdf. Accessed 4 Mar 2016

  • Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  CAS  PubMed  Google Scholar 

  • Joung JK (2015) Unwanted mutations: standards needed for gene-editing errors. Nature 523:158

    Article  CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Kershen DL (2015) Sustainability Council of New Zealand Trust v The Environmental Protection Authority: gene Editing Technologies and the Law. GM Crops Food. doi:10.1080/21645698.2015.1122859

    PubMed  Google Scholar 

  • Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature methods 12:237–243

    Article  CAS  PubMed  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Keith Joung J (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  Google Scholar 

  • Kling J (2014) Labeling for better or worse. Nat Biotech 32:1180–1183

    Article  CAS  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    Article  CAS  PubMed  Google Scholar 

  • Lemaire O, Moneyron A, Masson JE (2010) “Interactive technology assessment” and beyond: the field trial of genetically modified grapevines at INRA-Colmar. PLoS Biol 8:e1000551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hallerman EM, Liu Q, Wu K, Peng Y (2015) The development and status of Bt rice in China. Plant Biotechnol J. doi:10.1111/pbi.12464

    Google Scholar 

  • Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KA, Guo Y (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science (New York, NY) 328:1151–1154

    Article  CAS  Google Scholar 

  • Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T (2015) TALEN-Based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS One 10:e0143877

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall A (2007) GM soybeans and health safety–a controversy reexamined. Nat Biotechnol 25:981–987

    Article  CAS  PubMed  Google Scholar 

  • Nagamangala Kanchiswamy C, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015a) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64

    Article  CAS  PubMed  Google Scholar 

  • Nagamangala Kanchiswamy C, Malnoy M, Velasco R, Kim JS, Viola R (2015b) Non-GMO genetically edited crop plants. Trends Biotechnol 33:489–491

    Article  Google Scholar 

  • Pauwels K, De Keersmaecker SCJ, De Schrijver A, du Jardin P, Roosens NHC, Herman P (2015) Next-generation sequencing as a tool for the molecular characterisation and risk assessment of genetically modified plants: added value or not? Trends Food Sci Technol 45:319–326

    Article  CAS  Google Scholar 

  • Ramessar K, Capell T, Twyman RM, Quemada H, Christou P (2008) Trace and traceability—a call for regulatory harmony. Nat Biotechnol 26:975–978

    Article  CAS  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis J, McLean MA, Shelton AM (2013) When bad science makes good headlines: Bt maize and regulatory bans. Nat Biotechnol 31:386–387

    Article  CAS  PubMed  Google Scholar 

  • Ryffel GU (2014) Transgene flow: facts, speculations and possible countermeasures. GM Crops Food 5:249–258

    Article  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800

    Article  CAS  PubMed  Google Scholar 

  • Siegrist M (1999) A Causal model explaining the perception and acceptance of gene technology. J Appl Soc Psychol 29:2093–2106

    Article  Google Scholar 

  • Siegrist M, Connor M, Keller C (2012) Trust, confidence, procedural fairness, outcome fairness, moral conviction, and the acceptance of GM field experiments. Risk Anal Off Publ Soc Risk Anal 32:1394–1403

    Article  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y (2004) Major psycological facotors affecting acceptance of gene-recombination technology. Risk Anal 24:1575–1583

    Article  PubMed  Google Scholar 

  • The_Convention_on_Biological_Diversity (2016) The Cartagena Protocol on Biosafety https://bch.cbd.int/protocol/. Accessed 19 Jan 2016

  • The_New_Zealand_Environmental_Protection_Authority (2015) Consultation on wording of ‘organisms not genetically modified’ regulations in the Hazardous Substances and New Organisms Act. http://www.epa.govt.nz/consultations/new-organisms/Pages/consultation-organisms-not-genetically-modified-regulations.aspx. Accessed 19 Jan 2016

  • The_US_Library_of_Congress (2014a) Restrictions on Genetically Modified Organisms: New Zealand. http://www.loc.gov/law/help/restrictions-on-gmos/new-zealand.php. Accessed 19 Jan 2016

  • The_US_Library_of_Congress (2014b ) Restrictions on Genetically Modified Organisms: Japan. http://www.loc.gov/law/help/restrictions-on-gmos/japan.php. Accessed 19 Jan 2016

  • Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2013) Design for controllability. EMBO Rep 14:3

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2015a) Nonbrowning GM apple cleared for market. Nat Biotechnol 33:326–327

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2015b) USDA approves next-generation GM potato. Nat Biotechnol 33:12–13

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2015) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J. doi:10.1111/pbi.12448:

    PubMed  Google Scholar 

  • Whelan AI, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food. doi:10.1080/21645698.21642015.21114698

    PubMed  Google Scholar 

  • Wolt JD, Wang K, Yang B (2015) The regulatory status of genome-edited crops. Plant Biotechnol J. doi:10.1111/pbi.12444:

    PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich S, Gatto KA (2015) Consumer perception of genetically modified organisms and sources of information. Adv Nutr (Bethesda, Md) 6:842–851

    Article  Google Scholar 

  • Zdziarski IM, Edwards JW, Carman JA, Haynes JI (2014) GM crops and the rat digestive tract: a critical review. Environ Int 73:423–433

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163:759–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF, Yang B (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J Cell Mol Biol 82:632–643

    Article  CAS  Google Scholar 

  • Zilberman D, Kaplan S, Kim E, Hochman G, Graff G (2013) Continents divided: understanding differences between Europe and North America in acceptance of GM crops. GM Crops Food 4:202–208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Hokkaido University faculty grant to TI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Ishii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Cardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, T., Araki, M. Consumer acceptance of food crops developed by genome editing. Plant Cell Rep 35, 1507–1518 (2016). https://doi.org/10.1007/s00299-016-1974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1974-2

Keywords

Navigation