Skip to main content
Log in

DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

DhEFL2, 3 and 4 regulate the flowering of Doritaenopsis . These genes could rescue elf4 - 1 phenotype in Arabidopsis while its overexpression delayed flowering.

Abstract

Phalaenopsis are popular floral plants, and studies on orchid flowering genes could help develop off-season cultivars. EARLY FLOWERING 4 (ELF4) of A. thaliana has been shown to be involved in photoperiod perception and circadian regulation. We isolated two members of the ELF4 family from Doritaenopsis hybrid (Doritaenopsis ‘Tinny Tender’ (Doritaenopsis Happy Smile × Happy Valentine)), namely, DhEFL2 and DhEFL3 (DhEFL4 has been previously cloned). Multiple alignment analysis of the deduced amino acid sequences of the three DhEFL homologs showed that DhEFL4 and DhEFL2 are similar with 72 % identical amino acids, whereas DhEFL3 is divergent with 72 % similarity with DhEFL2 and 68 % similarity with DhEFL4. DhEFL3 forms a separate phylogenetic subgroup and is far away from DhEFL2 and DhEFL4. The diurnal expression patterns of DhEFL2, 3, and 4 are similar in the long-day photoperiod conditions; however, in the short-day conditions, DhEFL3 is different from DhEFL2 and 4. For the DhEFL2, 3, and 4 genes, the strongest audience expression organs are the stem, petal and bud, respectively. The ectopic expression of DhEFL2, 3, or 4 in transgenic A. thaliana plants (Ws-2 ecotype) showed novel phenotypes by late flowering and more rosette leaves. The ectopic expression of DhEFL2, 3, or 4 could complement the elf4-1 flowering time and hypocotyl length defects in transgenic A. thaliana elf4-1 mutant plants. These results strongly suggest that DhEFL2, 3, and 4 may be involved in regulation of flower formation and floral induction in Doritaenopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ELF4 :

EARLY FLOWERING 4

EFL2 :

EARLY FLOWERING 4-like2

EFL3 :

EARLY FLOWERING 4-like3

EFL4 :

EARLY FLOWERING 4-like4

SD:

Short day

LD:

Long day

GI :

GIGANTEA

CCA1:

CIRCADIAN CLOCK ASSOCIATED 1

LHY:

LATE ELONGATED HYPOCOTYL

TOC1 :

TIMING OF CAB EXPRESSION 1

ELF3:

EARLY FLOWERING 3

LUX:

LUX ARRHYTHMO

CaMV:

Cauliflower mosaic virus

EST:

Expressed sequence tag

CO :

CONSTANS

RACE:

Rapid amplification of cDNA ends

ZT:

Zeitgeber time

qRT-PCR:

Quantitative real-time PCR

PCR:

Polymerase chain reaction

MS:

Murashige and Skoog

ORF:

Open reading frame

RT-PCR:

Reverse transcription-polymerase chain reaction

WT:

Wild type

References

  • Adeyemo OS, Kolmos E, Tohme J, Chavariaga P, Fregene M, Davis SJ (2011) Identification and characterization of the cassava core-clock gene EARLY FLOWERING 4. Trop Plant Biol 4:117–125

    Article  CAS  Google Scholar 

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

  • Atwood JT (1986) The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9:171–186

    Google Scholar 

  • Boxall SF, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible Crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chao Y-T, Su C-L, Jean W-H, Chen W-C, Chang Y-CA, Shih M-C (2014) Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite. Plant Mol Biol 84:529–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen W, Qin Q, Zheng Y, Wang C, Wang S, Zhang C, Zhou M, Cui Y (2015) Overexpression of Doritaenopsis hybrid EARLY FLOWERING 4-like4 gene, DhEFL4, postpones flowering in transgenic Arabidopsis. Plant Mol Biol Report in press

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cui Y-Y, Pandey DM, Hahn E-J, Paek K-Y (2004) Effect of drought on physiological aspects of Crassulacean acid metabolism in Doritaenopsis. Plant Sci 167:1219–1226

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21

    Article  CAS  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77

    Article  CAS  PubMed  Google Scholar 

  • Hsiao Y-Y, Chen Y-W, Huang S-C, Pan Z-J, Fu C-H, Chen W-H, Tsai W-C, Chen H-H (2011) Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genom 12:360

    Article  CAS  Google Scholar 

  • Hsu C-C, Chung Y-L, Chen T-C, Lee Y-L, Kuo Y-T, Tsai W-C, Hsiao Y-Y, Chen Y-W, Wu W-L, Chen H-H (2011) An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khanna R, Kikis EA, Quail PH (2003) EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol 133:1530–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiselev KV, Turlenko AV, Zhuravlev YN (2010) Structure and expression profiling of a novel calcium-dependent protein kinase gene PgCDPK1a in roots, leaves, and cell cultures of Panax ginseng. Plant Cell Tissue Organ Cult (PCTOC) 103:197–204

    Article  CAS  Google Scholar 

  • Kolmos E, Davis SJ (2007) ELF4 as a central gene in the circadian clock. Plant Signal Behav 2:370–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolmos E, Nowak M, Werner M, Fischer K, Schwarz G, Mathews S, Schoof H, Nagy F, Bujnicki JM, Davis SJ (2009) Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP J 3:350–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ (2007) ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144:391–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murakami M, Tago Y, Yamashino T, Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48:110–121

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ (2007) GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol 144:495–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Kaas Q, Zhang C, Zhou L, Luo X, Zhou M, Sun X, Zhang L, Paek K-Y, Cui Y (2012) The cold awakening of Doritaenopsis ‘Tinny Tender’ orchid flowers: the role of leaves in cold-induced bud dormancy release. J Plant Growth Regul 31:139–155

    Article  CAS  Google Scholar 

  • Sun X, Qin Q, Zhang J, Zhang C, Zhou M, Paek KY, Cui Y (2012) Isolation and characterization of the FVE gene of a Doritaenopsis hybrid involved in the regulation of flowering. Plant Growth Regul 68:77–86

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z-Y, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Xuan N, Jin Y, Zhang H, Xie Y, Liu Y, Wang G (2011) A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell Tissue Organ Cult (PCTOC) 107:101–112

    Article  CAS  Google Scholar 

  • Zakizadeh H, Stummann BM, Lütken H, Müller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tissue Organ Cult (PCTOC) 101:331–338

    Article  CAS  Google Scholar 

  • Zhang J-X, Wu K-L, Tian L-N, Zeng S-J, Duan J (2011) Cloning and characterization of a novel CONSTANS-like gene from Phalaenopsis hybrida. Acta Physiol Plant 33:409–417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhi John Lu, MOE Key of Bioinformatics, School of Life Science, Tsinghua University, for the useful suggestions on improving the manuscript, and Mr. B. B. Shi, School of Medicine, Tsinghua University, for the useful suggestions on drafting figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyi Cui.

Ethics declarations

Conflict of interest

No conflicts of interest declared.

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 30771762, 31170658, and 31301811) and the Science & Technology Key Project of Zhejiang Province (Grant No. 2012C12909-11).

Additional information

Communicated by P. Lakshmanan.

The nucleotide sequence reported in this paper has been submitted to GenBank with accession numbers KP728997 (DhEFL2 mRNA), KP728998 (DhEFL3 mRNA).

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2015_1848_MOESM1_ESM.tif

Supplementary material 1 (TIFF 14597 kb) Online Resource 1 Nucleotide and deduced amino acid sequences of DhEFL2 and 3 cDNAs. The DUF1313 superfamily region is indicated with the parenthesis in bold

299_2015_1848_MOESM2_ESM.docx

Supplementary material 2 (DOCX 72 kb) Online Resource 2 Sequence information on alignment of the DhEFL2, 3, 4 amino acid sequences with ELF4 and ELF4-like from different plant species.

299_2015_1848_MOESM3_ESM.docx

Supplementary material 3 (DOCX 16 kb) Online Resource 3 Sequence information on phylogenetic analysis of the DhEFL2, 3, and 4 encoded amino acid sequences from different plant species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Qin, Q., Zhang, C. et al. DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition. Plant Cell Rep 34, 2027–2041 (2015). https://doi.org/10.1007/s00299-015-1848-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1848-z

Keywords

Navigation