Skip to main content

Advertisement

Log in

C-Terminally fused affinity Strep-tag II is removed by proteolysis from recombinant human erythropoietin expressed in transgenic tobacco plants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

C -terminally fused Strep -tag II is removed from rhuEPO expressed in tobacco plants. The finding suggests that direct fusion of purification tags at the C -terminus of rhuEPO should be avoided.

Abstract

Asialo-erythropoietin (asialo-EPO), a desialylated form of EPO, is a potent tissue-protective agent. Recently, we and others have exploited a low-cost plant-based expression system to produce recombinant human asialo-EPO (asialo-rhuEPOP). To facilitate purification from plant extracts, Strep-tag II was engineered at the C-terminus of EPO. Although asialo-rhuEPOP was efficiently expressed in transgenic tobacco plants, affinity purification based on Strep -tag II did not result in the recovery of the protein. In this study, we investigated the stability of Strep-tag II tagged asialo-rhuEPOP expressed in tobacco plants to understand whether this fused tag is cleaved or inaccessible. Sequencing RT-PCR products confirmed that fused DNA sequences encoding Strep-tag II were properly transcribed, and three-dimensional protein structure model revealed that the tag must be fully accessible. However, Western blot analysis of leaf extracts and purified asialo-rhuEPOP revealed that the Strep-tag II was absent on the protein. Additionally, no peptide fragment containing Strep-tag II was identified in the LC–MS/MS analysis of purified protein further supporting that the affinity tag was absent on asialo-rhuEPOP. However, Strep-tag II was detected on asialo-rhuEPOP that was retained in the endoplasmic reticulum, suggesting that the Strep-tag II is removed during protein secretion or extraction. These findings together with recent reports that C-terminally fused Strep-tag II or IgG Fc domain are also removed from EPO in tobacco plants, suggest that its C-terminus may be highly susceptible to proteolysis in tobacco plants. Therefore, direct fusion of purification tags at the C-terminus of EPO should be avoided while expressing it in tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakker H, Rouwendal GJ, Karnoup AS et al (2006) An antibody produced in tobacco expressing a hybrid β1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci USA 103:7577–7582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldet P, Alban C, Axiotis S, Douce R (1993) Localization of free and bound biotin in cells from green pea leaves. Arch Biochem Biophys 303:67–73

    Article  CAS  PubMed  Google Scholar 

  • Benchabane M, Goulet C, Rivard D et al (2008) Preventing unintended proteolysis in plant protein factories. Plant Biotechnol J 6:633–648

    Article  CAS  PubMed  Google Scholar 

  • Benchabane M, Saint-Jore-Dupas C, Bardor M et al (2009) Targeting and post-translational processing of human α1-antichymotrypsin in BY-2 tobacco cultured cells. Plant Biotechnol J 7:146–160

    Article  CAS  PubMed  Google Scholar 

  • Castilho A, Gattinger P, Grass J et al (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castilho A, Neumann L, Gattinger P et al (2013) Generation of biologically active multi-sialylated recombinant human EPO-Fc in plants. PLoS One 8:e54836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q (2008) Expression and purification of pharmaceutical proteins in plants. Biol Eng 1:291–321

    Article  CAS  Google Scholar 

  • Choi D, Schroer SA, Lu SH et al (2010) Erythropoietin protects against diabetes through direct effects on pancreatic beta cells. J Exp Med 207:2831–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conley AJ, Mohib K, Jevnikar AM, Brandle JE (2009) Plant recombinant erythropoietin attenuates inflammatory kidney cell injury. Plant Biotechnol J 7:183–199

    Article  CAS  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  PubMed  Google Scholar 

  • Debeljak N, Davis KL, Kowel R, Sytkowsky AJ (2006) Variability in the immunodetection of His-tagged recombinant proteins. Anal Biochem 359:216–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erbayraktar S, Grasso G, Sfacteria A et al (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 100:6741–6746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    Article  CAS  PubMed  Google Scholar 

  • Haas J, Roth S, Arnold K et al (2013) The protein model portal—a comprehensive resource for protein structure and model information. Database 2013:bat031. doi:10.1093/database/bat031

  • Hehle VK, Paul MJ, Drake PM, Ma JKC, Dollerweed CJV (2011) Antibody degradation in tobacco plants: predominantly apoplastic process. BMC Biotechnol 11:128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jez J, Castilho A, Grass J et al (2013) Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 8:371–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kittur FS, Hung CY, Darlington DE, Sane DC, Xie J (2012) N-glycosylation engineering of tobacco plants to produce asialoerythropoietin. Plant Cell Rep 31:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Kittur FS, Bah M, Archer-Hartmann S et al (2012) Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants. PLoS One 8(10):e76468

    Article  Google Scholar 

  • Kittur FS, Arthur A, Nguyen M et al (2014) Two-step purification procedure for recombinant human asialoerythropoietin expressed in transgenic plants. Intl J Biol Macromol 72:1111–1116

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lai PH, Everette R, Wang FF et al (1986) Structural characteristics of human erythropoietin. J Biol Chem 261:3116–3121

    CAS  PubMed  Google Scholar 

  • Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lattenmayer C, Loeschel M, Schriebl K et al (2007) Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones. Biotechnol Bioeng 96:1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Leist M, Ghezzi P, Grasso G et al (2004) Derivatives of erythropoietin are tissue protective but not erythropoietic. Science 305:239–242

    Article  CAS  PubMed  Google Scholar 

  • Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Song T (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105

    Article  CAS  PubMed  Google Scholar 

  • Majorek KA, Kuhn ML, Chruszcz M et al (2014) Double trouble buffer selection and His-tag presence may be responsible for non-reproducibility of biomedical experiments. Protein Sci 23:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Musa TA, Hung CY, Darlington DE, Sane DC, Xie J (2009) Overexpression of human erythropoietin in tobacco plants does not affect plant fertility or morphology. Plant Biotechnol Rep 3:157–165

    Article  Google Scholar 

  • Noel LD, Cagna G, Stuttman J et al (2007) Interactions between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okada T, Sawada K, Kubota K (2007) Asialoerythropoietin has a strong renoprotective effects against ischemia-reperfusion in a murine model. Transplantation 84:504–510

    Article  CAS  PubMed  Google Scholar 

  • Outchkourov NS, Rogelj B, Strukelj B, Jongsma MA (2003) Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production. Plant Physiol 133:379–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parson J, Altmann F, Arrenber CK et al (2012) Moss-based production of asialoerythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants. Plant Biotechnol J 10:851–861

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Recny MA, Scoble HA, Kim Y (1987) Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. Identification of des-arginine 166 erythropoietin. J Biol Chem 262:17156–17163

    CAS  PubMed  Google Scholar 

  • Sabaty M, Grosse S, Adiyanczyk G et al (2013) Detrimental effect of 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochem 14:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  • Schiermeyer A, Schinkel H, Apel S, Fischer R, Schillberg S (2005) Production of Desmodus salivary plasminogen activator alpha1 (DSPAalpha1) in tobacco is hampered by proteolysis. Biotechnol Bioeng 89:848–858

    Article  CAS  PubMed  Google Scholar 

  • Schimdt TG, Skerra A (2007) The Strep-tag system for one-step purification and high affinity detection or purification of proteins. Nat Protcol 2:1528–1535

    Article  Google Scholar 

  • Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248 (Web Server issue)

    Article  PubMed Central  PubMed  Google Scholar 

  • Syed RS, Reid SW, Li C et al (1998) Crystal structure of human erythropoietin complexed to its receptor at 1.9 Angstrom. Nature 395:511–516

    Article  CAS  PubMed  Google Scholar 

  • Takeyama T, Takemura G, Kanamori H et al (2012) Asialoerythropoietin, a nonerythropoietic derivative of erythropoietin displays broad anti-heart failure activity. Circ Heart Fail 5:274–285

    Article  CAS  PubMed  Google Scholar 

  • Van der Hoorn RA (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223

    Article  PubMed  Google Scholar 

  • Vercammon D, Cotte BVD, Jaeger GD et al (2004) Type II metacaspases Atmc4 and Atmca of Arabidopsis thaliana cleaves substrates after arginine and lysine. J Biol Chem 279:45329–45336

    Article  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis like cell death in yeast. J Biol Chem 280:14691–14699

    Article  CAS  PubMed  Google Scholar 

  • Wee EGT, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wen D, Boissel JP, Showers M, Ruch BC, Bunn F (1994) Erythropoietin structure-function relationship. J Biol Chem 269:22839–22846

    CAS  PubMed  Google Scholar 

  • Werner AK, Sparkes IA, Romeis T, Witte CP (2008) Identification, biochemical characterization and subcellular localization of allontoate amidohydrolases for Arabidopsis and Soybean. Plant Physiol 146:418–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotech Adv 30:419–433

    Article  CAS  Google Scholar 

  • Witte CP, Noel LD, Gilbert J, Parker JE, Romeis T (2004) Rapid one-step protein purification from plant material using the eight-amino acid long Strep II epitope. Plant Mol Biol 55:135–147

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Akai K, Kawanishi G et al (1991) Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties. J Biol Chem 266:20434–20439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by National Institute of General Medical Sciences grant (SC3GM088084) and North Carolina Biotechnology Center Grant (2013-BRG-1207) to J.H. Xie.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Xie.

Additional information

Communicated by Baochun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 4909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittur, F.S., Lalgondar, M., Hung, CY. et al. C-Terminally fused affinity Strep-tag II is removed by proteolysis from recombinant human erythropoietin expressed in transgenic tobacco plants. Plant Cell Rep 34, 507–516 (2015). https://doi.org/10.1007/s00299-014-1730-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1730-4

Keywords

Navigation