Skip to main content
Log in

Suppression of Arabidopsis AtPUB30 resulted in increased tolerance to salt stress during germination

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The Arabidopsis U-box E3 Ub ligase AtPUB30 participates in the salt stress tolerance as a negative factor in an ABA-independent manner during germination.

Abstract

Based on the in silico expression data, the U-box protein 30 (AtPUB30) from Arabidopsis thaliana was identified as a gene that responds to salt stress. The deduced AtPUB30 protein consists of 448 amino acids with a single U-box motif and five ARM-repeat domains. An in vitro self-ubiquitination assay demonstrated that bacterially expressed AtPUB30 exhibited E3 ubiquitin (Ub) ligase activity and that the U-box domain was essential for the activity. Real-time qRT-PCR and promoter-GUS analyses showed that AtPUB30 was induced by high salinity, but not by drought, cold, or abscisic acid (ABA), in roots but not in shoots. These results suggest that AtPUB30 is an Arabidopsis U-box E3 Ub ligase, the expression of which is selectively enhanced by salt stress in roots. T-DNA-inserted loss-of-function atpub30 mutant plants (atpub30-1 and atpub30-2) were more tolerant to salt stress in the germination stage, as identified by radicle emergence, cotyledon opening, and more vigorous early root growth relative to wild-type plants. Thus, it is likely that AtPUB30 plays a negative role in high salinity tolerance in the germination process. Wild type and mutant plants displayed very similar germination rates when treated with ABA, suggesting that the action of AtPUB30 in the germination stage is ABA independent. The post-germination growth of NaCl-stressed wild type and mutant plants were indistinguishable. Overall, our data suggest that the Arabidopsis U-box E3 Ub ligase AtPUB30 participates in the salt stress tolerance as a negative factor in the germination stage in root tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ARM:

Repeats armadillo repeats

CaMV:

Cauliflower mosaic virus

GFP:

Green fluorescent protein

HECT:

Homology to E6-AP carboxyl terminus

MBP:

Maltose-binding protein

RING:

Really interesting new gene

Ub:

Ubiquitin

UPS:

Ubiquitin-26S proteasome system

References

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Castellanos-Cervantes T, Diaz de Leon JL, Matros A, Mock HP, Perez-Alfocea F, Salekdeh GH, Witzel K, Zorb C (2013) Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics-Current achievements and perspectives. Proteomics 13: 1885–2900

  • Bergler J, Hoth S (2011) Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol 13:725–730

    Article  CAS  PubMed  Google Scholar 

  • Bing L, Feng CC, Li JL, Li XX, Zhao BC, Shen YZ, Huang ZJ, Ge RC (2013) Overexpression of the AtSTK gene increases salt, PEG and ABA tolerance in Arabidopsis. J Plant Biol 56:375–382

    Article  CAS  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotechnol 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Hellmann H (2013) Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant 6:1388–1404

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Chung HS, Ryu MY, Park MJ, Lee MM, Bahk YY, Kim J, Pai HS, Kim WT (2006) Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-box E3 ubiquitin ligase homolog. Plant Physiol 142:1664–1682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SK, Ryu MY, Song C, Kwak JM, Kim WT (2008) Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20:1899–1914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SK, Ryu MY, Seo DH, Kang BG, Kim WT (2011) The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses. Plant Physiol 157:2240–2257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trend Plant Sci 19(6):371–379

    Article  CAS  Google Scholar 

  • Dielen AS, Badaoui S, Candresse T, German-Retana S (2010) RING domain E3 ubiquitin ligases. Mol Plant Pathol 11:293–308

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dye BT, Schulman BA (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 36:131–150

    Article  CAS  PubMed  Google Scholar 

  • Guerra DD, Callis J (2012) Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol 160:56–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y (2013) The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet 9:e1003391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hua Z, Vierstra RD (2011) The Cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28:730–738

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high salt and drought stress responses. Plant Physiol 162:1733–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139:1597–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulathu Y, Komander D (2012) Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P, Sherman-Broyles S, Nasrallah ME, Nasrallah JB (2007) A cryptic modifier causing transient self-incompatibility in Arabidopsis thaliana. Curr Biol 17:734–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Cui F, Li Q, Yin B, Zhang H, Lin B, Wu Y, Xia R, Tang S, Xie Q (2011a) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 21:957–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu YC, Wu YR, Huang XH, Sun J, Xie Q (2011b) AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol Plant 4:938–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Li W, Ning Y, Shirsekar G, Cai Y, Wang X, Dai L, Wang Z, Liu W, Wang GL (2012) The U-Box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants. Plant Physiol 160:28–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne T, He P, Shan L (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–1442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599–616

    Article  CAS  PubMed  Google Scholar 

  • Marín I (2013) Evolution of plant HECT ubiquitin ligases. PLoS One 8:e68536

    Article  PubMed Central  PubMed  Google Scholar 

  • Mudgil Y, Shiu S-H, Stone SL, Salt JN, Goring DR (2004) A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-Box E3 ubiquitin ligase family. Plant Physiol 134:59–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J 65:194–205

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453

    Article  Google Scholar 

  • Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S (2009) Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J 59:39–51

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196:13–28

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Kitano H, Fujioka S (2013) An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice. Plant Signal Behav 3:e27117

    Article  Google Scholar 

  • Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A (2008) Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol 147:2084–2095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21:2655–2671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT (2012a) Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol 160:556–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo KI, Song E, Chung S, Lee JH (2012b) Roles of various Cullin-RING E3 ligases involved in hormonal and stress responses in plants. J Plant Biol 55:421–428

    Article  CAS  Google Scholar 

  • Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao XC, Lu YT (2013) Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt. J Plant Biol 56:306–314

    Article  CAS  Google Scholar 

  • Vierstra RD (2009) The ubiquitin–26s proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (2012) The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol 160:2–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Deng XW (2011) Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 21:1286–1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Lu Y, Jiang T, Berg H, Li C, Xia Y (2013) The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. Plant J 74:511–523

    Article  CAS  PubMed  Google Scholar 

  • Yee D, Goring DR (2009) The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot 60:1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Zeng LR, Park CH, Venu RC, Gough J, Wang GL (2008) Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1:800–815

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Rea AC, Fu T, Ma C, Nasrallah JB (2014) Exploring the role of a stigma-expressed plant U-box gene in the pollination responses of transgenic self-incompatible Arabidopsis thaliana. Plant Reprod 27:59–68

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhao J, Yang Y, Chen C, Liu Y, Jin X, Chen L, Li X, Deng XW, Schumaker KS, Guo Y (2012) UBIQUITIN-SPECIFIC PROTEASE16 modulates salt tolerance in Arabidopsis by regulating Na+/H+ antiport activity and serine hydroxymethyltransferase stability. Plant Cell 24:5106–5122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Research Foundation (Project No. 2010-0000782 and No. 2014-003891) and from the National Center for GM Crops (Project No. PJ008152) of the Next Generation BioGreen 21 Program funded by the Rural Development Administration, Republic of Korea, to W.T.K. and from the Korea Institute of Science and Technology Information to B.G.K.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Taek Kim.

Additional information

Communicated by Jeong Sheop Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.H., Seo, D.H., Kang, B.G. et al. Suppression of Arabidopsis AtPUB30 resulted in increased tolerance to salt stress during germination. Plant Cell Rep 34, 277–289 (2015). https://doi.org/10.1007/s00299-014-1706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1706-4

Keywords

Navigation