Skip to main content
Log in

Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Expression analysis of miRNAs and understanding their target genes function in dormant tea bud might be used to identify molecular network panel and novel approaches for modulating dormancy in tea.

Abstract

Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is an important commercial beverage crop manufactured from the apical bud and two leaves immediately below the bud. The yield and quality of tea depend on the vegetative growth of shoots and bud dormancy. The dormancy of bud is being regulated by many factors, such as mechanical, environmental and molecular mechanisms. MicroRNAs (miRNAs) are a newly identified class of small non-protein coding regulatory RNAs in both plants and animals which regulates gene expression at post-transcriptional level either by cleavage or translational inhibition of targeted mRNA transcripts. With these importances, the expression pattern of tea miRNAs was analyzed in active and dormant bud using stem-loop pulse RT-qPCR method. The results demonstrated the following expression pattern for highly up-regulated miRNAs, cs-miR 414 > cs-miR 408 > cs-miR782 > cs-miR169, and down-regulated miRNAs, cs-miR828 > cs-miR1864 > cs-miR852 > cs-miR1425 in dormant bud of tea. Furthermore, the role of target transcripts regulated by these miRNAs in relation to bud dormancy was discussed in detail. Therefore, the present study on the miRNA expression in tea will provide basis and considerably broaden the scope of understanding the function of miRNAs within the bud tissues and can serve as an initial point for RNA interference-based controlling strategies of bud dormancy in tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ER:

Expression ratio

GO:

Gene ontology

miRNA:

microRNA

RT-qPCR:

Reverse transcription-quantitative PCR

ROS:

Relative oxygen species

RQ:

Relative quantity

TAB:

Two and a bud

TF:

Transcription factor

References

  • Anburaj J, Viswanathan C, Prabu GR (2012) Expression pattern analysis of microRNAs in tea plant [Camellia sinensis (L.) O. kuntze]. In: Proceedings of 4th Annual Research Congress (KUARC-2012) Karpagam University pp 134

  • Barth M, Holstein SE (2004) Identification and functional characterization of arabidopsis AP180, a binding partner of plant alphaC-adaptin. J Cell Sci 117:2051–2062

    Article  CAS  PubMed  Google Scholar 

  • Burgess PJ, Carr MKV, Mizambwa FCS, Nixon DJ, Lugusi J, Kimambo EI (2006) Evaluation of simple hand-held mechanical systems for harvesting tea (Camellia sinensis). Exp Agric 42:165–187

    Article  Google Scholar 

  • Chang IF, Szick-Miranda K, Pan S, Bailey-Serres J (2005) Proteomic characterization of evolutionarily conserved and variable proteins of arabidopsis cytosolic ribosomes. Plant Physiol 137:848–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dai X, Zhuang Z, Zhao PX (2011) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121

    Article  CAS  PubMed  Google Scholar 

  • Das A, Mondal TK (2010) Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). Am J Plant Sci 1:77–86

    Article  CAS  Google Scholar 

  • Dun EA, Alexandre de saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Y, Bian L, Shi J, Xu J, Xi M, Wang G (2013) Expression of a conifer COBRA-like gene ClCOBL1 from chinese fir (Cunninghamia lanceolata) alters the leaf architecture in tobacco. Plant Physiol Biochem 70:483–491

    Article  CAS  PubMed  Google Scholar 

  • Hedley PE, Russell JR, Jorgensen L, Gordon S, Morris JA, Hackett CA, Cardle L, Brennan R (2010) Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrum L.). BMC Plant Biol 10:202

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  CAS  PubMed  Google Scholar 

  • Kaminska M, Deniziak M, Kerjan P, Barciszewski J, Mirande M (2000) A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J 19:6908–6917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanai M, Nishimura M, Hayashi M (2010) A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant J 62:936–947

    CAS  PubMed  Google Scholar 

  • Koprivova A, Kopriva S (2008) Lessons from investigation of regulation of APS reductase by salt stress. Plant Signal Behav 3:567–569

    Article  PubMed Central  PubMed  Google Scholar 

  • Krishnaraj T, Gajjeraman P, Palanisamy S, Subhas Chandrabose SR, Azad Mandal AK (2011) Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Plant Physiol Biochem 49:565–571

    Article  CAS  PubMed  Google Scholar 

  • Kwak KJ, Kim JY, Kim YO, Kang H (2007) Characterization of transgenic arabidopsis plants over expressing high mobility group B proteins under high salinity, drought or cold stress. Plant Cell Physiol 48:221–231

    Article  CAS  PubMed  Google Scholar 

  • Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1 gene of arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Liu HT, Sun DY, Zhou RG (2004) Ca (2+) and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu D, Maurel C, Lin J (2011) Single-molecule analysis of PIP2.1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA (2012) Identification and characterization of fructose 1,6 bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503:65–74

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Yadav SK (2012) Characterization of novel small RNAs from tea (Camellia sinensis L.). Mol Biol Rep 39:3976–3986

    Article  Google Scholar 

  • Olsiewski PJ, Kaczorowski GJ, Walsha C (1980) Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli. J Biol Chem 255:4487494

    Google Scholar 

  • Ortiz-Morea FA, Vicentini R, Silva GF, Silva EM, Carrer H, Rodrigues AP, Nogueira FT (2013) Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth. J Exp Bot 64:2307–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panasenko OO, David FP, Collart MA (2009) Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination. Genetics 181:447–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parrotta L, Cresti M, Cai G (2013) Accumulation and post-translational modifications of plant tubulins. Plant Biol. doi:10.1111/plb.12104

    PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potkar R, Recla J, Busov V (2013) ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochem Biophys Res Commun 431:512–518

    Article  CAS  PubMed  Google Scholar 

  • Prabu GR, Mandal AK (2010) Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genomics Proteomics Bioinform 8:113–121

    Article  CAS  Google Scholar 

  • Riis B, Rattan SI, Clark BF, Merrick WC (1990) Eukaryotic protein elongation factors. Trends Biochem Sci 15:420–424

    Article  PubMed  Google Scholar 

  • Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Choi YD, Lee JS (2012) Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiol 159:696–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars-metabolism, sensing and abiotic stress. Plant Signal Behav 5:388–393

    Article  Google Scholar 

  • Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thirugnanasambantham K, Prabu G, Palanisamy S, Chandrabose SR, Mandal AK (2013) Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 169:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Herrmann KM, Weller SC, Goldsbrough PB (1991) Cloning and nucleotide sequence of a complementary DNA encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from tobacco. Plant Physiol 97:847–858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An arabidopsis minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128:4289–4299

    CAS  PubMed  Google Scholar 

  • Wu H, Shen Y, Hu Y, Tan S, Lin Z (2011) A phytocyanin-related early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco. J Plant Physiol 168:935–943

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Takáč T, Burbach C, Menzel D, Samaj J (2011) Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA). BMC Plant Biol 11:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. R. Vasanthakumar, Shri. K. Murigaiah, Dr. P. Lakshmana-perumalsamy, Karpagam University, Coimbatore, Tamil Nadu, India for their encouragement and support during the course of study. We thank Dr. P. Mohankumar, Director, UPASI-Tea Research Foundation, Valparai, Tamil Nadu, India for providing the permission to collect bud tissues of tea. The financial support in terms of research fellowship to Mr. Viswanathan Chandran by Department of Biotechnology, Government of India, New Delhi, India (BT/PR2402/AGR/36/698/2011) is also gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabu Gajjeraman.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyaraj, A., Chandran, V. & Gajjeraman, P. Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]. Plant Cell Rep 33, 1053–1069 (2014). https://doi.org/10.1007/s00299-014-1589-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1589-4

Keywords

Navigation