Skip to main content
Log in

A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway.

Abstract

A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LIN2:

LESION INITIATION 2

CPO:

Coproporphyrinogen III oxidase

EDR1:

ENHANCED DISEASE RESISTANCE 1

PAD4:

PHYTOALEXIN DEFICIENT 4

SID2:

SALICYLIC ACID INDUCTION-DEFICIENT 2

NPR1:

NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1

EIN2:

ETHYLENE INSENSITIVE 2

COI1:

CORONATINE-INSENSITIVE 1

KEG:

KEEP ON GOING

SR1:

SIGNAL RESPONSIVE1

LMMs:

Lesion mimic mutants

PCD:

Programmed cell death

SA:

Salicylic acid

JA:

Jasmonic acid

ET:

Ethylene

HR:

Hypersensitive response

SAR:

Systemic acquired resistance

DAB:

Diaminobenzidine

References

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284(5423):2148–2152 [pii]:7613

    Article  PubMed  CAS  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15(2):365–379

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6(12):1845–1857. doi:10.1105/tpc.6.12.18456/12/1845

    PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9(9):1573–1584. doi:10.1105/tpc.9.9.15739/9/1573

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jorgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16(4):490–502. doi:10.1101/gad.218202

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88(1):57–63 [pii]:S0092-8674(00)81858-9

    Article  PubMed  CAS  Google Scholar 

  • Christiansen KM, Gu Y, Rodibaugh N, Innes RW (2011) Negative regulation of defence signalling pathways by the EDR1 protein kinase. Mol Plant Pathol 12(8):746–758. doi:10.1111/j.1364-3703.2011.00708.x

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97(16):9323–9328. doi:10.1073/pnas.150005697150005697

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8(10):1793–1807. doi:10.1105/tpc.8.10.17938/10/1793

    PubMed  CAS  Google Scholar 

  • Danon A, Miersch O, Felix G, Camp RG, Apel K (2005) Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J 41(1):68–80. doi:10.1111/j.1365-313X.2004.02276.x

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92(14):6602–6606

    Article  PubMed  CAS  Google Scholar 

  • Devadas SK, Enyedi A, Raina R (2002) The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J 30(4):467–480 [pii]:1300

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77(4):565–577 [pii]:0092-8674(94)90218-6

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88(5):685–694

    Article  PubMed  CAS  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1(4):316–323 [pii]:1369-5266(88)80053-0

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

    Article  PubMed  CAS  Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32(3):375–390 [pii]:1454

    Article  PubMed  CAS  Google Scholar 

  • Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6(5):751–759. doi:10.1105/tpc.6.5.7516/5/751

    PubMed  CAS  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10(6):947–956

    PubMed  CAS  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98(1):373–378. doi:10.1073/pnas.011405198011405198

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261 (5122):754–756. doi:10.1126/science.261.5122.754

    Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis–2001 status. Curr Opin Plant Biol 4(4):301–308 [pii]:S1369-5266(00)00177-1

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1997) Use of Arabidopsis for genetic dissection of plant defense responses. Annu Rev Genet 31:547–569

    Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545. doi:10.1146/annurev.arplant.48.1.525

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4(2):327–341

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77(4):551–563

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Innes RW (2011) The KEEP ON GOING protein of Arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to trans-Golgi network/early endosome vesicles. Plant Physiol 155(4):1827–1838. doi:10.1104/pp.110.171785

    Article  PubMed  CAS  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2(6):513–523. doi:10.1105/tpc.2.6.5132/6/513

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8(10):1773–1791

    PubMed  CAS  Google Scholar 

  • Hans Thordal-Christensen ZZ, Yangdou Wei§, David B. Collinge (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11 (6):1187–1194

  • Hans-Peter Mock UK, Elisabeth K, Barbara R, Bernhard G (1998) Defense responses to tetrapyrrole-induced oxidative stress in transgenic plants with reduced uroporphyrinogen decarboxylase or coproporphyrinogen oxidase activity. Plant Physiol 116 (1):107–116

  • Hirashima M, Tanaka R, Tanaka A (2009) Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol 50 (4):719–729. doi:10.1093/pcp/pcp035

    Google Scholar 

  • Hoisington DA, Neuffer MG, Walbot V (1982) Disease lesion mimics in maize. I. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol 93(2):381–388. ([pii]:0012-1606(82)90125-7)

    Google Scholar 

  • Ishikawa A (2005) Tetrapyrrole metabolism is involved in lesion formation, cell death, in the Arabidopsis lesion initiation 1 mutant. Biosci Biotechnol Biochem 69(10):1929–1934

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Okamoto H, Iwasaki Y, Asahi T (2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27(2):89–99 [pii]:tpj1058

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13(10):2225–2240

    PubMed  CAS  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 96(23):13583–13588

    Article  PubMed  CAS  Google Scholar 

  • Jurkowski GI, Smith RK Jr, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant Microbe Interact 17(5):511–520. doi:10.1094/MPMI.2004.17.5.511

    Article  PubMed  CAS  Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2(5):437–445. doi:10.1105/tpc.2.5.4372/5/437

    PubMed  CAS  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14(15):3712–3720

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Tessaro MJ, Li X, Zhang Y (2010) Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain. Plant Physiol 153 (3):1425–1434. doi:10.1104/pp.110.156240

    Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10 (5):466–472. doi:10.1016/j.pbi.2007.08.008

    Google Scholar 

  • Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8(6):263–271 [pii]:S1360138503001080

    Article  PubMed  CAS  Google Scholar 

  • Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98(2):771–776. doi:10.1073/pnas.021465298

    Article  PubMed  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105(2):467–472. doi:105/2/467

    PubMed  CAS  Google Scholar 

  • Mock HP, Grimm B (1997) Reduction of uroporphyrinogen decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and leads to light-dependent necrosis. Plant Physiol 113(4):1101–1112 [pii]:113/4/1101

    PubMed  CAS  Google Scholar 

  • Mock HP, Lermontova I, Keetman U, Grimm B (1997) Consequences of photo-oxidation in transgenic tobacco with co-suppression of coproporphyrinogen oxidase. Phyton Ann Rei Bot A 37:169–174

    CAS  Google Scholar 

  • Mock HP, Heller W, Molina A, Neubohn B, Sandermann H Jr, Grimm B (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274(7):4231–4238

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E (1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17(6):667–678

    Article  PubMed  CAS  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59(3):501–520. doi:10.1093/jxb/erm239

    Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17(1):233–240. doi:10.1105/tpc.104.027276

    Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14(1):275–286

    Article  PubMed  CAS  Google Scholar 

  • Nie H, Wu Y, Yao C, Tang D (2011) Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genomics 38(4):137–148. doi:10.1016/j.jgg.2011.03.001

    Google Scholar 

  • Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158(4):1847–1859. doi:10.1104/pp.111.192310

    Article  PubMed  CAS  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15(10):2320–2332. doi:10.1105/tpc.014662

    Google Scholar 

  • Pan H, Liu S, Tang D (2012) HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. Plant J 69(5):831–843. doi:10.1111/j.1365-313X.2011.04835.x

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B (2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8(11):2033–2046. doi:10.1105/tpc.8.11.20338/11/2033

    PubMed  CAS  Google Scholar 

  • Rasmussen JB, Hammerschmidt R, Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol 97(4):1342–1347

    Article  PubMed  CAS  Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11(9):1695–1708

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819. doi:10.1105/tpc.8.10.18098/10/1809

    PubMed  CAS  Google Scholar 

  • Shah J, Kachroo P, Klessig DF (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11(2):191–206

    PubMed  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268(5211):661–667

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, Shi IK, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17(5):535–545

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Hirashima M, Satoh S, Tanaka A (2003) The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the “stay-green” phenotype in Arabidopsis. Plant Cell Physiol 44(12):1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Innes RW (2002) Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32(6):975–983 [pii]:1482

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Xie M, Kim YJ, Zhou J, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11(1):15–29

    PubMed  CAS  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2005a) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J 44(2):245–257. doi:10.1111/j.1365-313X.2005.02523.x

    Google Scholar 

  • Tang D, Christiansen KM, Innes RW (2005b) Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 138(2):1018–1026. doi:10.1104/pp.105.060400

    Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2006) A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant J 47(1):75–84. doi:10.1111/j.1365-313X.2006.02769.x

    Google Scholar 

  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13(1):63–68 [pii]:S0952-7915(00)00183-7

    Article  PubMed  CAS  Google Scholar 

  • Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S (2007) EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol 7:35. doi:10.1186/1471-2229-7-35

    Google Scholar 

  • Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306(5699):1183–1185. doi:10.1126/science.1103178

    Google Scholar 

  • Wang Y, Nishimura MT, Zhao T, Tang D (2011) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. doi:10.1111/j.1365-313X.2011.04669.x

    Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3(10):1085–1094. doi:10.1105/tpc.3.10.10853/10/1085

    PubMed  CAS  Google Scholar 

  • Wawrzynska A, Christiansen KM, Lan Y, Rodibaugh NL, Innes RW (2008) Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol 148(3):1510–1522. doi:10.1104/pp.108.127605

    Article  PubMed  CAS  Google Scholar 

  • Weymann K, Hunt M, Uknes S, Neuenschwander U, Lawton K, Steiner HY, Ryals J (1995) Suppression and restoration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7(12):2013–2022. doi:10.1105/tpc.7.12.20137/12/2013

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414(6863):562–565. doi:10.1038/3510710835107108

    Article  PubMed  CAS  Google Scholar 

  • Wolter M, Hollricher K, Salamini F, Schulze-Lefert P (1993) The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet 239(1–2):122–128

    PubMed  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3(8):809–818

    PubMed  CAS  Google Scholar 

  • Yang M, Wardzala E, Johal GS, Gray J (2004) The wound-inducible Lls1 gene from maize is an orthologue of the Arabidopsis Acd1 gene, and the LLS1 protein is present in non-photosynthetic tissues. Plant Mol Biol 54(2):175–191. doi:10.1023/B:PLAN.0000028789.51807.6a

    Article  PubMed  CAS  Google Scholar 

  • Yao C, Wu Y, Nie H, Tang D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant J 71(6):1015–1028. doi:10.1111/j.1365-313X.2012.05048.x

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Transgenic Program of China (Grant No. 2011ZX08005-002) and by the National Transgenic Program of China (Grant No. 2009ZX08009-036B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding-zhong Tang or Bai-ming Cui.

Additional information

Communicated by Y. Lu.

C. Guo and G. Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1315 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Cy., Wu, Gh., Xing, J. et al. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Rep 32, 687–702 (2013). https://doi.org/10.1007/s00299-013-1403-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1403-8

Keywords

Navigation