Skip to main content
Log in

Prokaryotic toxin–antitoxin systems: novel regulations of the toxins

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Toxin–antitoxin (TA) systems are widely conserved in prokaryotic plasmids and chromosomes and are linked to many roles in cell physiology, including plasmid maintenance, stress response, persistence and protection from phage infection. A TA system is composed of a stable toxin and a labile antitoxin that inhibits a harmful effect of the cognate toxin. When gene expression from the TA loci is repressed under certain conditions such as nutrient starvation, the toxin is freed from the rapidly degrading antitoxin and obstructs an essential cellular process, such as DNA replication, translation and peptidoglycan synthesis, which subsequently causes growth arrest. TA systems are classified into five types according to the nature and the function of antitoxins, and the activity of toxins is tightly regulated in a variety of ways. This short-review highlights several novel regulatory mechanisms for Escherichia coli toxins that we recently discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman E, Engelberg-Kulka H, Glaser G (1996) An Escherichia coli chromosomal “addiction module” regulated by guanosine 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci USA 93:6059–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alawneh AM, Qi D, Yonesaki T, Otsuka Y (2016) An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin–antitoxin module. Mol Microbiol 99:188–198

    Article  CAS  PubMed  Google Scholar 

  • Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GPC (2012) Viral evasion of a bacterial suicide system by RNA–based molecular mimicry enables infectious altruism. PLoS Genet 8:e1003023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R (2005) Toxin–antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30:672–679

    Article  CAS  PubMed  Google Scholar 

  • Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–1505

    Article  CAS  PubMed  Google Scholar 

  • Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC (2009) The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci USA 106:894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fozo EM, Hemm MR, Storz G (2008) Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes K, Christensen SK, Løbner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371–382

    Article  CAS  PubMed  Google Scholar 

  • Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Benedik MJ, Wood TK (2012) Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environ Microbiol 14:669–679

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Tomizawa J (1980) Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci USA 77:2450–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Pogliano J, Helinski DR, Konieczny I (2002) ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 44:971–979

    Article  CAS  PubMed  Google Scholar 

  • Kai T, Selick HE, Yonesaki T (1996) Destabilization of bacteriophage T4 mRNAs by a mutation of gene 61.5. Genetics 144:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada K, Hanaoka F, Burley SK (2003) Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 11:875–884

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Wang X, Ma Q, Zhang XS, Wood TK (2009) Toxin–antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 191:1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Koga M, Otsuka Y, Lemire S, Yonesaki T (2011) Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin systems. Genetics 187:123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L (2011) Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell 154:1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Tan Q, Awako N, Wu KP, Inouye M (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84:979–989

    Article  CAS  PubMed  Google Scholar 

  • Miller HI, Riggs AD, Gill GN (1973) Ribonuclease H (Hybrid) in Escherichia coli. Identification and characterization. J Biol Chem 248:2621–2624

    CAS  PubMed  Google Scholar 

  • Mutschler H, Gebhardt M, Shoeman RL, Meinhart A (2011) A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol 9:e1001033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naka K, Koga M, Yonesaki T, Otsuka Y (2014) RNase HI stimulates the activity of RnlA toxin in Escherichia coli. Mol Microbiol 91:596–605

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid prolifiretion. Proc Natl Acad Sci USA 80:4784–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka Y, Yonesaki T (2012) Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol Microbiol 83:669–681

    Article  CAS  PubMed  Google Scholar 

  • Otsuka Y, Miki K, Koga M, Katayama N, Morimoto W, Takahashi Y, Yonesaki T (2010) IscR regulates RNase LS activity by repressing rnlA transcription. Genetics 185:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecota DC, Wood TK (1996) Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J Bacteriol 178:2044–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524

    Article  CAS  PubMed  Google Scholar 

  • Rocker A, Meinhart A (2015) Type II toxin: antitoxin systems. More than small selfish entities? Curr Genet. doi 10.1007/s00294-015-0541-7

  • Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y, Qimron U, Sorek R (2013) Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 50:1–13

    Article  Google Scholar 

  • Schuster CF, Bertram R (2013) Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340:73–85

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro T, Kanaya S (2009) Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J 276:1482–1493

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Awano N, Inouye M (2011) Yee V is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol Microbiol 79:109–118

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M et al (2011) Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol 7:356–366

    Google Scholar 

  • Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V et al (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Gao Z-Q, Otsuka Y, Naka K, Yonesaki T, Zhang H, Dong Y-H (2013) Structure-function studies of Escherichia coli RnlA reveal a novel toxin structure involved in bacteriophage resistance. Mol Microbiol 90:956–965

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Inouye M (2009) mRNA interferases, sequence-specific endoribonucleases from the toxin–antitoxin systems. Prog Mol Biol Transl Sci 85:467–500

    Article  CAS  PubMed  Google Scholar 

  • Yarmolinsky MB (1995) Programmed cell death in bacterial populations. Science 267:836–837

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Inouye M (2011) RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Mol Microbiol 79:1418–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang J, Hara H, Kato I, Inouye M (2005) Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J Biol Chem 280:3143–3150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author cordially thanks Dr. Toshi Kawate at Cornell University for invaluable help with the manuscript. This work was partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists B (25870386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Otsuka.

Ethics declarations

Conflict of interest

The author has no conflict of interest to declare.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuka, Y. Prokaryotic toxin–antitoxin systems: novel regulations of the toxins. Curr Genet 62, 379–382 (2016). https://doi.org/10.1007/s00294-015-0557-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0557-z

Keywords

Navigation