Skip to main content
Log in

Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Three different transport systems exist to accumulate a sufficient amount of potassium cations in yeasts. The most common of these are Trk-type transporters, which are used by all yeast species. Though most yeast species employ two different types of transporters, we only identified one gene encoding a potassium uptake system (Trk-type) in the genome of the highly osmotolerant yeast Zygosaccharomyces rouxii, and our results showed that ZrTrk1 is its major (and probably only) specific potassium uptake system. When expressed in Saccharomyces cerevisiae, the product of the ZrTRK1 gene is localized to the plasma membrane and its presence efficiently complements the phenotypes of S. cerevisiae trk1trk2∆ cells. Deletion of the ZrTRK1 gene resulted in Z. rouxii cells being almost incapable of growth at low K+ concentrations and it changed some cell physiological parameters in a way that differs from S. cerevisiae. In contrast to S. cerevisiae, Z. rouxii cells without the TRK1 gene contained less potassium than the control cells and their plasma membrane was significantly hyperpolarized compared with those of the parental strain when grown in the presence of 100 mM KCl. On the other hand, subsequent potassium starvation led to a substantial depolarization which is again different from S. cerevisiae. Plasma-membrane hyperpolarization did not prevent the efflux of potassium from Z. rouxii trk1Δ cells during potassium starvation, and the activity of ZrPma1 is less affected by the absence of ZrTRK1 than in S. cerevisiae. The use of a newly constructed Z. rouxii-specific plasmid for the expression of pHluorin showed that the intracellular pH of the Z. rouxii wild type and the trk1∆ mutant is not significantly different. Together with the fact that Z. rouxii cells contain a significantly lower amount of intracellular potassium than identically grown S. cerevisiae cells, our results suggest that this highly osmotolerant yeast species maintain its intracellular pH and potassium homeostasis in way(s) partially distinct from S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ca:

Candida albicans

Cd:

Candida dubliniensis

Cg:

Candida glabrata

Dh:

Debaryomyces hansenii

Do:

Debaryomyces occidentalis

Kl:

Kluyveromyces lactis

Kt:

Kluyveromyces thermotolerans

Ps:

Pichia stipitis

Sc:

Saccharomyces cerevisiae

Sk:

Saccharomyces kluyveri

Sp:

Schizosaccharomyces pombe

Yl:

Yarrowia lipolytica

Zr:

Zygosaccharomyces rouxii

References

  • Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74:95–120

    Article  PubMed  CAS  Google Scholar 

  • Banuelos MA, Madrid R, Rodriguez-Navarro A (2000) Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol 37:671–679

    Article  PubMed  CAS  Google Scholar 

  • Benito B, Garciadeblas B, Schreier P, Rodriguez-Navarro A (2004) Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3:359–368

    Article  PubMed  CAS  Google Scholar 

  • Bertl A, Ramos J, Ludwig J, Lichtenberg-Frate H, Reid J, Bihler H, Calero F, Martinez P, Ljungdahl PO (2003) Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol 47:767–780

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang Y, Zhou M (2011) Crystal structure of a potassium ion transporter, TrkH. Nature 471:336–340

    Article  PubMed  CAS  Google Scholar 

  • Corratge-Faillie C, Jabnoune M, Zimmermann S, Very AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  PubMed  CAS  Google Scholar 

  • De Hertogh B, Hancy F, Goffeau A, Baret PV (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172:771–781

    Article  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77:789–807

    Article  PubMed  CAS  Google Scholar 

  • Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859

    PubMed  CAS  Google Scholar 

  • Gaskova D, Brodska B, Herman P, Vecer J, Malinsky J, Sigler K, Benada O, Plasek J (1998) Fluorescent probing of membrane potential in walled cells: diS-C-3(3) assay in Saccharomyces cerevisiae. Yeast 14:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed  CAS  Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    Article  PubMed  CAS  Google Scholar 

  • Iwaki T, Tamai Y, Watanabe Y (1999) Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene. Microbiology-UK 145:241–248

    Article  CAS  Google Scholar 

  • Iwaki T, Kurono S, Yokose Y, Kubota K, Tamai Y, Watanabe Y (2001) Cloning of glycerol-3-phosphate dehydrogenase genes (ZrGPD1 and ZrGPD2) and glycerol dehydrogenase genes (ZrGCY1 and ZrGCY2) from the salt-tolerant yeast Zygosaccharomyces rouxii. Yeast 18:737–744

    Article  PubMed  CAS  Google Scholar 

  • Kinclova O, Ramos J, Potier S, Sychrova H (2001) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40:656–668

    Article  PubMed  CAS  Google Scholar 

  • Kinclova-Zimmermannova O, Zavrel M, Sychrova H (2005) Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol Chem 280:30638–30647

    Article  PubMed  CAS  Google Scholar 

  • Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312

    PubMed  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study. Elsevier, New York

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Madrid R, Gomez MJ, Ramos J, Rodriguez-Navarro A (1998) Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273:14838–14844

    Article  PubMed  CAS  Google Scholar 

  • Maresova L, Urbankova E, Gaskova D, Sychrova H (2006) Measurements of plasma membrane potential changes in Saccharomyces cerevisiae cells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Res 6:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Maresova L, Muend S, Zhang YQ, Sychrova H, Rao R (2009) Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J Biol Chem 284(5):2795–2802

    Article  PubMed  CAS  Google Scholar 

  • Maresova L, Hoskova B, Urbankova E, Chaloupka R, Sychrova H (2010) New applications of pHluorin-measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast 27:317–325

    PubMed  CAS  Google Scholar 

  • Martorell P, Stratford M, Steels H, Fernandez-Espinar MT, Querol A (2007) Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114:234–242

    Article  PubMed  CAS  Google Scholar 

  • Merchan S, Pedelini L, Hueso G, Calzada A, Serrano R, Yenush L (2011) Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes Cells 16:152–165

    Article  PubMed  CAS  Google Scholar 

  • Michel B, Lozano C, Rodriguez M, Coria R, Ramirez J, Pena A (2006) The yeast potassium transporter Trk2 is able to substitute for Trk1 in its biological function under low K and low pH conditions. Yeast 23:581–589

    Article  PubMed  CAS  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, Rivetta A (2009) Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans. FEMS Yeast Res 9:278–292

    Article  PubMed  CAS  Google Scholar 

  • Navarrete C, Petrezselyova S, Barreto L, Martinez JL, Zahradka J, Arino J, Sychrova H, Ramos J (2010) Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res 10:508–517

    PubMed  CAS  Google Scholar 

  • Petrezselyova S, Zahradka J, Sychrova H (2010) Saccharomyces cerevisiae BY4741 and W303–1A laboratory strains differ in salt tolerance. Fungal Biol 114:144–150

    Article  PubMed  CAS  Google Scholar 

  • Petrezselyova S, Ramos J, Sychrova H (2011) Trk2 transporter is a relevant player in K+ supply and plasma-membrane potential control in Saccharomyces cerevisiae. Folia Microbiol 56:23–28

    Article  CAS  Google Scholar 

  • Pribylova L, de Montigny J, Sychrova H (2007) Tools for the genetic manipulation of Zygosaccharomyces rouxii. FEMS Yeast Res 7:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Pribylova L, Papouskova M, Sychrova H (2008) The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology. Fungal Genet Biol 45:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Prista C, Gonzalez-Hernandez JC, Ramos J, Loureiro-Dias MC (2007) Cloning and characterization of two K+ transporters of Debaryomyces hansenii. Microbiology 153:3034–3043

    Article  PubMed  CAS  Google Scholar 

  • Ramos J, Haro R, Rodriguez-Navarro A (1990) Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta 1029:211–217

    Article  PubMed  CAS  Google Scholar 

  • Ramos J, Arino J, Sychrova H (2011) Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 317:1–8

    Article  PubMed  CAS  Google Scholar 

  • Rivetta A, Kuroda T, Slayman C (2011) Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels. Pflugers Arch 462:315–330

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The Transporter Classification Database: recent advances. Nucleic Acids Res 37 (Database issue):D274–D278

    Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319:689–693

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Shiramizu M, Tamai Y (1991) Molecular cloning and sequencing of plasma membrane H+-ATPase gene from the salt-tolerant yeast Zygosaccharomyces rouxii. J Biochem 110:237–240

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Iwaki T, Shimono Y, Ichimiya A, Nagaoka Y, Tamai Y (1999) Characterization of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast Zygosaccharomyces rouxii. J Biosci Bioeng 88:136–142

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Tsuchimoto S, Tamai Y (2004) Heterologous expression of Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) and glycerol dehydrogenase gene (ZrGCY1) in Saccharomyces cerevisiae. FEMS Yeast Res 4:505–510

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Oshima N, Tamai Y (2005) Co-expression of the Na+/H+-antiporter and H+-ATPase genes of the salt-tolerant yeast Zygosaccharomyces rouxii in Saccharomyces cerevisiae. FEMS Yeast Res 5:411–417

    Article  PubMed  CAS  Google Scholar 

  • Zahradka J, Sychrova H (2012) Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and Ena ATPase under potassium-limiting conditions. FEMS Yeast Res 12:439–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Pavla Herynkova is gratefully acknowledged. This work was supported by the following grants: GACR P503/10/0307, AV0Z 50110509 and RVO:6798582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Sychrová.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stříbný, J., Kinclová-Zimmermannová, O. & Sychrová, H. Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae . Curr Genet 58, 255–264 (2012). https://doi.org/10.1007/s00294-012-0381-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-012-0381-7

Keywords

Navigation