Skip to main content
Log in

Preparation of origanum minutiflorum oil-loaded core–shell structured chitosan nanofibers with tunable properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel core–shell nanofiber structures loaded by an essential oil using chitosan (CH) as a polymer have been successfully produced via the simple and effective production method of coaxial electrospinning. For this purpose, origanum minutiflorum (OM) oil was incorporated into the nanofibers. A blended form of the nanofibers (B–OM) was obtained by simply mixing OM with CH polymer solution, then this blended form was loaded separately into the core (C–OM) and the shell (S–OM) layers to obtain different composite core–shell nanofiber structures. The structures of the core and shell layers were investigated by TEM analysis. Furthermore, water contact angle analysis confirmed composition of the shell layer of each nanofiber type of B–OM, S–OM, C–OM, and differentiated it from the monolithic nanofiber of CH. The SEM images displayed the average diameter of the C–OM as 291 ± 10, while S–OM nanofibers demonstrated 284 ± 12 nm. The S–OM composite nanofibers showed the highest antibacterial activity during 24 h of the testing time. The nanofiber mats of B–OM and S–OM showed initial burst release with different profiles over an extended 7-day period of time after investigation with an in vitro drug release test. Moreover, C–OM nanofibers demonstrated prolonged time for in vitro drug release behavior with the initial burst profile at 8 h, then the release profile was relatively slow and sustained for about 7 days. The OM oil included nanofiber mats with different core–shell and blended morphologies that can hold a great promise for wound healing, antibacterial, and biomedical applications due to the controlled and tunable drug release and antibacterial activities. Another important advantage of our method over the traditional techniques is being eco-friendly, since it uses natural compound and natural polymer with controllable gas permeability of the nanofiber porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  2. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932

    Article  CAS  Google Scholar 

  3. Calisir MD, Erol M, Kilic A, Avci H (2016) Photophysical properties of phosphorescent elastomeric composite nanofibers. Dyes Pigm 125:95–99

    Article  CAS  Google Scholar 

  4. Fang J, Niu H, Lin T, Wang X (2008) Applications of electrospun nanofibers. Chin Sci Bull 53(15):2265

    CAS  Google Scholar 

  5. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  PubMed  Google Scholar 

  6. Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromol 13(2):412–421

    Article  CAS  Google Scholar 

  7. Cheng L, Ma S, Wang T, Li X, Luo J, Li W, Mao Y, Gz D (2014) Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties. Mater Lett 131:23–26

    Article  CAS  Google Scholar 

  8. Li Y, Lim CT, Kotaki M (2015) Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 56:572–580

    Article  CAS  Google Scholar 

  9. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  CAS  PubMed  Google Scholar 

  10. Yarin A (2011) Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym Adv Technol 22(3):310–317

    Article  CAS  Google Scholar 

  11. Nguyen TTT, Chung OH, Park JS (2011) Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr Polym 86(4):1799–1806

    Article  CAS  Google Scholar 

  12. Sp Z, Sinha-Ray S, Sinha-Ray S, Kristl J, Yarin AL (2015) Long-term sustained ciprofloxacin release from pmma and hydrophilic polymer blended nanofibers. Mol Pharm 13(1):295–305

    Google Scholar 

  13. Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Fundamentals and applications of controlled release drug delivery, Springer, New York, p 19–43

  14. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  15. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95

    CAS  Google Scholar 

  16. Avci H, Guzel FD, Erol S, Akpek A (2017) Recent advances in organ-on-a-chip technologies and future challenges: a review. Turk J Chem. http://doi.org/10.3906/kim-1611-35

    Article  Google Scholar 

  17. Avci H, Monticello R, Kotek R (2013) Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. J Biomater Sci Polym Ed 24(16):1815–1830

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez-Garcia I, Silva-Espinoza B, Ortega-Ramirez L, Leyva J, Siddiqui M, Cruz-Valenzuela M, Gonzalez-Aguilar G, Ayala-Zavala J (2016) Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit Rev Food Sci Nutr 56(10):1717–1727

    Article  CAS  PubMed  Google Scholar 

  19. Aslim B, Yucel N (2008) In vitro antimicrobial activity of essential oil from endemic origanum minutiflorum on ciprofloxacin-resistant Campylobacter spp. Food Chem 107(2):602–606

    Article  CAS  Google Scholar 

  20. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19(11):18367–18380

    Article  CAS  PubMed  Google Scholar 

  21. Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337

    Article  CAS  PubMed  Google Scholar 

  22. Nurbas M, Ghorbanpoor H, Avci H (2017) An eco-friendly approach to synthesis and characterization of magnetite (Fe3O4) nanoparticles using Platanus orientalis L. leaf extrac. Dig J Nanomater Biostruct 12(4):993–1000

    Google Scholar 

  23. D’Souza S (2014) A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm 2014:1–12

    Google Scholar 

  24. Che H, Huo M, Peng L, Ye Q, Guo J, Wang K, Wei Y, Yuan J (2015) CO2-switchable drug release from magneto-polymeric nanohybrids. Polym Chem 6(12):2319–2326

    Article  CAS  Google Scholar 

  25. Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS (2012) Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm 438(1):117–122

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Wu C, Zhang Y, White CJB, Xue Y, Nie H, Zhu L (2010) Elaboration, characterization and study of a novel affinity membrane made from electrospun hybrid chitosan/nylon-6 nanofibers for papain purification. J Mater Sci 45(9):2296–2304

    Article  CAS  Google Scholar 

  27. Rieger KA, Birch NP, Schiffman JD (2016) Electrospinning chitosan/poly (ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation. Carbohydr Polym 139:131–138

    Article  CAS  PubMed  Google Scholar 

  28. Ballester-Costa C, Sendra E, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M (2013) Chemical composition and in vitro antibacterial properties of essential oils of four Thymus species from organic growth. Ind Crops Prod 50:304–311

    Article  CAS  Google Scholar 

  29. Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21(4):369

    Article  CAS  PubMed  Google Scholar 

  30. Pesavento G, Calonico C, Bilia A, Barnabei M, Calesini F, Addona R, Mencarelli L, Carmagnini L, Di Martino M, Nostro AL (2015) Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 54:188–199

    Article  CAS  Google Scholar 

  31. Schulz H, Özkan G, Baranska M, Krüger H, Özcan M (2005) Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy. Vib Spectrosc 39(2):249–256

    Article  CAS  Google Scholar 

  32. Wu Y, Luo Y, Wang Q (2012) Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT Food Sci Technol 48(2):283–290

    Article  CAS  Google Scholar 

  33. Rodríguez-Solana R, Daferera DJ, Mitsi C, Trigas P, Polissiou M, Tarantilis PA (2014) Comparative chemotype determination of Lamiaceae plants by means of GC–MS, FT-IR, and dispersive-Raman spectroscopic techniques and GC-FID quantification. Ind Crops Prod 62:22–33

    Article  CAS  Google Scholar 

  34. Ryan MP, Rea MC, Hill C, Ross RP (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62(2):612–619

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goy RC, Britto D, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247

    Article  CAS  Google Scholar 

  36. Arkoun M, Daigle F, Heuzey M-C, Ajji A (2017) Mechanism of action of electrospun chitosan- based nanofibers against meat spoilage and pathogenic bacteria. Molecules 22(4):585

    Article  CAS  Google Scholar 

  37. Wang C, Duan L, Qin J, Wu Z, Guo S (2016) Studies on antibacterial activities against S. aureus of chitosan metal chelates prepared in magnetic field. J Appl Biomater Funct Mater 14(1):80–82

    Google Scholar 

  38. Rodríguez-Núñez JR, López-Cervantes J, Sánchez-Machado DI, Ramírez-Wong B, Torres-Chavez P, Cortez-Rocha MO (2012) Antimicrobial activity of chitosan-based films against Salmonella typhimurium and Staphylococcus aureus. Int J Food Sci Technol 47(10):2127–2133

    Article  CAS  Google Scholar 

  39. Escárcega-Galaz AA, López-Cervantes J, Sánchez-Machado DI, Brito-Zurita OR, Campas-Baypoli ON (2017) Antimicrobial activity of chitosan membranes against Staphylococcus aureus of clinical origin. In: Enany S (ed) The rise of virulence and antibiotic resistance in Staphylococcus aureus. InTech, London, pp 109–124

    Google Scholar 

  40. Yan S, Xiaoqiang L, Lianjiang T, Chen H, Xiumei M (2009) Poly (l-lactide-co-ɛ-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer 50(17):4212–4219

    Article  CAS  Google Scholar 

  41. Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, Tesarova M, Lukas D, Amler E (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromol 13(4):952–962

    Article  CAS  Google Scholar 

  42. Wang C, Yan K-W, Lin Y-D, Hsieh PC (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397

    Article  CAS  Google Scholar 

  43. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  44. Wang X, Yue T, Lee T-C (2015) Development of pleurocidin-poly (vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control 54:150–157

    Article  CAS  Google Scholar 

  45. Yu H, Jia Y, Yao C, Lu Y (2014) PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int J Pharm 469(1):17–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Scientific Research Projects Funds (BAP 2014–614) of Eskisehir Osmangazi University for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Avci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avci, H., Ghorbanpoor, H. & Nurbas, M. Preparation of origanum minutiflorum oil-loaded core–shell structured chitosan nanofibers with tunable properties. Polym. Bull. 75, 4129–4144 (2018). https://doi.org/10.1007/s00289-017-2257-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2257-y

Keywords

Navigation