Skip to main content
Log in

Physical properties of poly[(thiophene-2,5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: synthesis and characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conjugated poly[(thiophene-2,5-diyl)-co-para-chloro benzylidene] has been synthesized by a simple condensation method. Condensation of thiophene with para chloro benzaldehyde catalyzed by POCl3 in 1,4 dioxane neutral solvent and reaction was carried out at low temperature (87 °C) for 30 h. After completion of the reaction, 5–10 ml ammonia to remove the catalyst and 100 ml methanol was added to obtain the product. Doping effect on the polymer was also analyzed using different characterization techniques such as: UV–Vis, FTIR, 1HNMR, 13CNMR, XRD, FE-SEM, EDX, BET, DSC. The result reveals that the yield of doped poly[(thiophene-2,5-diyl)-co-p-chloro benzylidene] is relatively good using POCl3 as a dehydrating agent using single-step polymerization. Structural analysis confirmed the formation of polycrystalline phase. The surface morphology of undoped complex showed the nanoporous structure, consisting of nano sheets which were interconnected with each other. XRD pattern confirms that the synthesized material is in nano crystalline form. Doping with cobalt sulphate resulted in porous structure with increase in surface area value from 2400 to 3300 cm2/g. DSC analysis reveals that the samples are thermally stable up to 300 °C. From optical absorption, the band gap is calculated and observed to be around 2.68 and 2.87 eV and conductivity values of 1.99 × 10−7 and 9.63 × 10−8 S/cm using two-probe method for undoped and doped samples and hence it can be used in many applications as a good semi-conducting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mac Diarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel Lecture). Angew Chem Int 40:2581–2590

    Article  CAS  Google Scholar 

  2. Chan HSO, Ng SC (1998) Synthesis, characterization and applications of thiophene-based functional polymers. Prog Polym Sci 23:1167–1231

    Article  CAS  Google Scholar 

  3. Bolognesi A, Botta C, Porzio W (2001) In: Blau WJ, Lianos P, Schubert U (eds) Molecular materials and functional polymers. Springer, Wien, pp 121–128

    Chapter  Google Scholar 

  4. Chen WC, Jenekhe SA (1995) Small-bandgap conducting polymers based on conjugated poly(heteroarylene methines). 2. Synthesis, structure, and properties. Macromolecules 28:465–480

    Article  CAS  Google Scholar 

  5. De Paoli MA, Gazotti WA (2002) Conductive polymer blends: preparation, properties and applications. Macromol Symp 189:83–104

    Article  Google Scholar 

  6. Balci N, Toppare L, Akbulut U, Stanke D, Hallensleben ML (1998) Polypyrrole grafts synthesized via electrochemical polymerization. J Macromol Sci Pure Appl Chem A 35:1727–1739

    Article  Google Scholar 

  7. Reddy KR, Karthik KV, Prasad SBB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    Article  CAS  Google Scholar 

  8. Cao L, Gong C, Yang J (2016) Conducting tetraaniline derivatives with fast switching time, enhanced contrast and coloration efficiency. Electrochim Acta 192:422–430

    Article  CAS  Google Scholar 

  9. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  CAS  Google Scholar 

  10. Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Polym Chem Part A 48:1477–1484

    Article  CAS  Google Scholar 

  11. Reddy KR, Sin BC, Ryu KS, Kim JC, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    Article  CAS  Google Scholar 

  12. Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818

    Article  CAS  Google Scholar 

  13. Reddy KR, Lee KP, Gopalan AI (2008) Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: Effect of dopant on the properties. Colloids Surf A Physicochem Eng Asp 320:49–56

    Article  CAS  Google Scholar 

  14. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750

    Article  CAS  Google Scholar 

  15. Reddy KR, Lee KP, Lee Y, Gopalan AI (2007) Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: Synthesis and characterization. J Appl Polym Sci 106:1181–1191

    Article  CAS  Google Scholar 

  16. Lee Y, Shin D, Cho J, Park YH, Son Y, Baik DH (1998) Ionic interactions in polyacrylonitrile/polypyrrole conducting polymer composite. J Appl Polym Sci 69:2641–2648

    Article  CAS  Google Scholar 

  17. Soleymani R, Taheri M, Hoseynalibeygi M (2012) Synthesis of new poly(amide-imide)s derivatives based on amino acid compounds. Orient J Chem 28(2):757–772

    Article  CAS  Google Scholar 

  18. Park YH, Shin HC, Lee Y, Son Y, Baik DH (1999) Formation of polypyrrole copolymer in PSPMS precursor film by electrochemical polymerization. Mol Cryst Liq Cryst 327:221–224

    Article  CAS  Google Scholar 

  19. Stanke D, Hallensleben M, Toppare L (1995) Graft copolymers and composites of poly(methyl methacrylate) and polypyrrole Part II. Synth Met 73:261–266

    Article  CAS  Google Scholar 

  20. Kizilyar N, Toppare L, Onen A, Yagci Y (1998) Conducting copolymers of polypyrrole/polytetrahydrofuran. Polym Bull 40:639–645

    Article  CAS  Google Scholar 

  21. Jerome C, Martinot L, Louette P, Jerome R (2000) Synthesis of new (pyrrole-g-ε-caprolactone) copolymers. Macromol Symp 153:305–319

    Article  CAS  Google Scholar 

  22. Borole DD, Kapadi UR, Mahulikar PP, Hundiwale DG (2006) Electrochemical synthesis and characterization of conducting copolymer: poly(o-aniline-co-o-toluidine). Mater Lett 60:2447–2452

    Article  CAS  Google Scholar 

  23. Tanaka S, Sato M, Kaeriyama K, Kanetsuna H, Kato M, Suda Y (1983) Synthesis and properties of poly(phenylene chalcogenide)s. Makromol Chem Rapid Commun 4:231–235

    Article  CAS  Google Scholar 

  24. Reddy KR, Lee KP, Lee Y, Gopalan AI, Showkat AM (2006) Facile synthesis of hollow spheres of sulfonated polyanilines. Polym J 38:349–354

    Article  CAS  Google Scholar 

  25. Czerwinski W, Fink J, Nucker N (1987) Investigation of undoped and alkali-metal doped poly(p-phenylene selenide). In: Kuzmany H, Mehring M, Roth S (eds) Electronic properties of conjugated polymers. Springer series in solid-state sciences, Vol 76. Springer, Berlin, Heidelberg, pp 330–333

  26. Sankapal B, Baviskar P, Salunkhe D (2010) Synthesis and characterization of AgI thin films at low temperature. J Alloy Compd 506:268–270

    Article  CAS  Google Scholar 

  27. Dhanalakshmi K, Saraswathi R (2001) Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). J Mater Sci 36:4107–4115

    Article  CAS  Google Scholar 

  28. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Cat A Gen 489:1–16

    Article  CAS  Google Scholar 

  29. Burroughes JH, Bradley DCC, Brown AR, MacKay MK, Friend RH, Burn PL (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  30. Garnier F, Horowitz G, Peng X, Fichou D (1990) An all-organic "soft" thin film transistor with very high carrier mobility. Adv Mater 2:592–594

    Article  CAS  Google Scholar 

  31. Baviskar P, Ennaoui A, Sankapal B (2014) Influence of processing parameters on chemically grown ZnO films with low cost Eosin-Y dye towards efficient dye sensitized solar cell. Sol Energy 105:445–454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank R.C. Patel ASC College, H.R. Patel Pharmacy College, Shirpur, North Maharashtra University, Jalgaon, VNIT, Nagpur and SAIF, Chandigarh for providing UV, FTIR, XRD, FE-SEM, EDX, DSC, porosity and NMR measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahashabde, J.P., Patel, S.N. & Baviskar, P.K. Physical properties of poly[(thiophene-2,5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: synthesis and characterization. Polym. Bull. 75, 255–265 (2018). https://doi.org/10.1007/s00289-017-2033-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2033-z

Keywords

Navigation