Skip to main content

Advertisement

Log in

Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Mussel-inspired polymers have emerged as attractive candidates for the synthesis of injectable hydrogels with tissue-adhesive properties. In these systems, polymer crosslinking occurs via the oxidative coupling of catechol groups grafted on the polymer backbone, performed in the presence of an enzyme or a chemical oxidant. Here, we show that catechol-modified hyaluronic acid (HA-CA) can self-crosslink in physiological conditions without any requirement of oxidizing reagents. A careful rheological analysis of gelation of HA-CA solutions indicated that both the degree of substitution and the molar mass of HA-CA are key parameters controlling the gelation kinetics. Interestingly, the gelation time could be dramatically lowered by photo-oxidation of catechol using visible light in the presence of eosin Y as a photosensitizer. This strategy can be advantageously used to manage viscosity and gelation kinetics during injection, which paves the way for various biomedical applications of HA-CA including wound closure and healing as well as drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16

    Article  CAS  Google Scholar 

  2. Kirschner CM, Anseth KS (2013) Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater 61:931–944

    Article  CAS  Google Scholar 

  3. Li Y, Rodrigues J, Tomas H (2012) Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41:2193–2221

    Article  CAS  Google Scholar 

  4. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  5. Bae KH, Wang L-S, Kurisawa M (2013) Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B Mater Biol Med 1:5371–5388

    Article  CAS  Google Scholar 

  6. Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B Mater Biol Med 2:5319–5338

    Article  CAS  Google Scholar 

  7. Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636

    Article  CAS  Google Scholar 

  8. Joo MK, Park MH, Choi BG, Jeong B (2009) Reverse thermogelling biodegradable polymer aqueous solutions. J Mater Chem 19:5891–5905

    Article  CAS  Google Scholar 

  9. Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS (2015) Stimuli-responsive injectable in situ-forming hydrogels for regenerative medicines. Polym Rev 55:407–452

    Article  CAS  Google Scholar 

  10. Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33:1281–1290

    Article  Google Scholar 

  11. Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579

    Article  CAS  Google Scholar 

  12. Patenaude M, Smeets NMB, Hoare T (2014) Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol Rapid Commun 35:598–617

    Article  CAS  Google Scholar 

  13. Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, Luo J, Qian Z (2012) Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33:4801–4809

    Article  CAS  Google Scholar 

  14. Hou Q, De Bank PA, Shakesheff KM (2004) Injectable scaffolds for tissue regeneration. J Mater Chem 14:1915–1923

    Article  CAS  Google Scholar 

  15. Yang J-A, Yeom J, Hwang BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39:1973–1986

    Article  CAS  Google Scholar 

  16. Lee Y, Chung HJ, Yeo S, Ahn C-H, Lee H, Messersmith PB, Park TG (2010) Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 6:977–983

    Article  CAS  Google Scholar 

  17. Lee SH, Lee Y, Lee S-W, Ji H-Y, Lee J-H, Lee DS, Park TG (2011) Enzyme-mediated cross-linking of pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomater 7:1468–1476

    Article  CAS  Google Scholar 

  18. Deming TJ (1999) Mussel byssus and biomolecular materials. Curr Opin Chem Biol 3(1):100–105

    Article  CAS  Google Scholar 

  19. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132

    Article  CAS  Google Scholar 

  20. Yu M, Hwang J, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826

    Article  CAS  Google Scholar 

  21. Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 3:1038–1047

    Article  CAS  Google Scholar 

  22. Shin J, Lee JS, Lee C, Park H-J, Yang K, Jin Y, Ryu JH, Hong KS, Moon S-H, Chung H-M, Yang HS, Um SH, Oh J-W, Kim D-I, Lee H, Cho S-W (2015) Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv Funct Mater 25:3814–3824

    Article  CAS  Google Scholar 

  23. Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci 1:783–790

    Article  CAS  Google Scholar 

  24. Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, Kim DI, Lee H, Cho SW (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 14:2004–2013

    Article  CAS  Google Scholar 

  25. Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, Park KI, Cho SW, Lee H (2013) Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater 23:1774–1780

    Article  CAS  Google Scholar 

  26. Destaing O, Planus E, Bouvard D, Oddou C, Badowski C, Bossy V, Raducanu A, Fourcade B, Albiges-Rizo C, Block MR (2010) β1A integrin is a master regulator of invadosome organization and function. Mol Biol Cell 21:4108–4119

    Article  CAS  Google Scholar 

  27. Chung H, Grubbs RH (2012) Rapidly cross-linkable DOPA containing terpolymer adhesives and PEG-based cross-linkers for biomedical applications. Macromolecules 45:9666–9673

    Article  CAS  Google Scholar 

  28. Faessler R, Pfaff M, Murphy J, Noegel AA, Johansson S, Timpl R, Albrecht R (1995) Lack of β1 integrin gene in embryonic stem cells affects morphology, adhesion, and migrations but not integration into the inner cell mass of blastocysts. J Cell Biol 128:979–988

    Article  CAS  Google Scholar 

  29. Mansukhani A, Bellosta P, Sahni M, Basilico C (2000) Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)–activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 149:1297–1308

    Article  CAS  Google Scholar 

  30. Bouvard D, Aszodi A, Kostka G, Block MR, Albiges-Rizo C, Fassler R (2007) Defective osteoblast function in ICAP-1-deficient mice. Development 134:2615–2625

    Article  CAS  Google Scholar 

  31. Yang J, Stuart MAC, Kamperman M (2014) Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev 43:8271–8298

    Article  CAS  Google Scholar 

  32. Kalyanaraman B, Felix CC, Sealy RC (1985) Semiquinone anion radicals of catechol (amine)s, catechol estrogens, and their metal ion complexes. Environ Health Perspect 64:185–198

    Article  CAS  Google Scholar 

  33. Burzio LA, Waite JH (2000) Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry 39:11147–11153

    Article  CAS  Google Scholar 

  34. Loebel C, Broguiere N, Alini M, Zenobi-Wong M, Eglin D (2015) Microfabrication of photo-cross-linked hyaluronan hydrogels by single- and two-photon tyramine oxidation. Biomacromolecules 16:2624–2630

    Article  CAS  Google Scholar 

  35. Bonino CA, Samorezov JE, Jeon O, Alsberg E, Khan SA (2011) Real-time in situ rheology of alginate hydrogel photocrosslinking. Soft Matter 7:11510–11517

    Article  CAS  Google Scholar 

  36. Kavanagh GM, Ross-Murphy SB (1998) Rheological characterization of polymer gels. Prog Polym Sci 23:533–562

    Article  CAS  Google Scholar 

  37. Andersen SO, Jacobsen JP, Bojesen G, Roepstorff P (1992) Phenoloxidase catalyzed coupling of catechols. Identification of novel coupling products. Biochim Biophys Acta 1118:134–138

    Article  CAS  Google Scholar 

  38. Barreto WJ, Ponzoni S, Sassi P (1999) A Raman and UV-vis study of catecholamines oxidized with Mn(III). Spectrochim Acta Part A Mol Biomol Spectrosc 55A:65–72

    CAS  Google Scholar 

  39. Linert W, Herlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen—their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1316:160–168

    Article  Google Scholar 

  40. Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086

    Article  CAS  Google Scholar 

  41. Turturro MV, Sokic S, Larson JC, Papavasiliou G (2013) Effective tuning of ligand incorporation and mechanical properties in visible light photopolymerized poly(ethylene glycol) diacrylate hydrogels dictates cell adhesion and proliferation. Biomed Mater 8:025001–025012 (Bristol, United Kingdom)

    Article  Google Scholar 

  42. Kang X, Yu Y, Bao Y, Cai W, Cui S (2015) Real time quantification of the chemical cross-link density of a hydrogel by in situ UV-vis spectroscopy. Polym Chem 6:4252–4257

    Article  CAS  Google Scholar 

  43. Zwicker EF, Grossweiner LI (1963) Transient measurements of photochemical processes in dyes. II. The mechanism of the photosensitized oxidation of aqueous phenol by eosin. J Phys Chem 67:549–555

    Article  CAS  Google Scholar 

  44. Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B (2011) Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cells Mater 22:43–55

    Article  CAS  Google Scholar 

  45. Waite JH, Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893

    Article  CAS  Google Scholar 

  46. Waite JH, Tanzer ML (1980) The bioadhesive of Mytilus byssus: a protein containing L-dopa. Biochem Biophys Res Commun 96:1554–1561

    Article  CAS  Google Scholar 

  47. Ryu JH, Lee Y, Do MJ, Jo SD, Kim JS, Kim BS, Im GI, Park TG, Lee H (2014) Chitosan-g-hematin: enzyme-mimicking polymeric catalyst for adhesive hydrogels. Acta Biomater 10:224–233

    Article  CAS  Google Scholar 

  48. Zhou J, Defante AP, Lin F, Xu Y, Yu J, Gao Y, Childers E, Dhinojwala A, Becker ML (2015) Adhesion properties of catechol-based biodegradable amino acid-based poly(ester urea) copolymers inspired from mussel proteins. Biomacromolecules 16:266–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Grant-in-Aid for JSPS Fellows KAKENHI (Grant No. 265612). We are grateful to Prof. M. R. Block for the cell viability testing of the HA-CA hydrogels. We thank Eric Bayma-Pecit for his technical help in the rheological experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Auzély-Velty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Aoyagi, T., Ebara, M. et al. Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light. Polym. Bull. 74, 4069–4085 (2017). https://doi.org/10.1007/s00289-017-1937-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1937-y

Keywords

Navigation