Skip to main content
Log in

pH-controlled drug release of radiation synthesized graphene oxide/(acrylic acid-co-sodium alginate) interpenetrating network

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogel biocomposites containing a combination of graphene oxide (GO) and natural polymer-based copolymer of sodium alginate (Alg) and acrylic acid (AAc) were prepared by radiation-induced copolymerization and crosslinking. FTIR, XRD, and AFM analyses revealed the successful preparation of single-layered graphene oxide sheets. FTIR and TGA data confirmed the incorporation of GO within the (AAc-co-Alg) copolymer hydrogel. The effect of GO content, as interpenetrating network, on the swelling behavior of (AAc-co-Alg) copolymer hydrogel was investigated. The results of the pH-dependent swelling showed the presence of GO within the prepared hydrogel improve the ability of the GO/(AAc-co-Alg) nanocomposite hydrogel to bypass the acidity of the simulated stomach medium (pH 1) without significant swelling and regulate it for longer period in simulated intestine medium (pH 7). Moreover, the swelling kinetics showed that all the samples under investigation possess Fickian at pH 1 and non-Fickian at pH 7. The evaluation of the prepared GO/(AAc-co-Alg) nanocomposite hydrogel as drug carrier was carried out in either simulated stomach and intestine media using cefadroxil as a model drug. The drug release profile came in a good agreement with swelling results which recommend the GO/(AAc-co-Alg) nanocomposite hydrogel as potential targeted drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wegrzyn M, Galindo B, Benedito A, Gimenez E (2015) Morphology, thermal, and electrical properties of polypropylene hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. J Appl Polym Sci 132(46):42793-1–42793-8. doi:10.1002/app.42793

    Article  Google Scholar 

  2. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489:1–16. doi:10.1016/j.apcata.2014.10.001

    Article  CAS  Google Scholar 

  3. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207. doi:10.1080/00222348.2011.583193

    Article  CAS  Google Scholar 

  4. Puri P, Mehta R, Rattan S (2015) Synthesis of conductive polyurethane/graphite composites for electromagnetic interference shielding. J Electron Mater 44(11):4255–4268. doi:10.1007/s11664-015-4004-1

    Article  CAS  Google Scholar 

  5. Zhou Q, Ye X, Wan Z, Jia C (2015) A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. J Power Sources 296:186–196. doi:10.1016/j.jpowsour.2015.07.012

    Article  CAS  Google Scholar 

  6. Lan Z, Gao S, Wu J, Lin J (2015) High-performing dye-sensitized solar cells based on reduced graphene oxide/PEDOT-PSS counter electrodes with sulfuric acid post-treatment. J Appl Polym Sci 132(41):42648-1–42648-5. doi:10.1002/app.42648

    Article  Google Scholar 

  7. Gupta S, Carrizosa SB (2015) Graphene-inorganic hybrids with cobalt oxide polymorphs for electrochemical energy systems and electrocatalysis: synthesis, processing and properties. J Electron Mater 44(11):4492–4509. doi:10.1007/s11664-015-4016-x

    Article  CAS  Google Scholar 

  8. Wu R, Wang Y, Chen L, Huang L, Chen Y (2015) Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. Rsc Adv 5(61):49182–49187. doi:10.1039/c5ra02099a

    Article  CAS  Google Scholar 

  9. Kim F, Cote LJ, Huang J (2010) Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 22(17):1954–1958. doi:10.1002/adma.200903932

    Article  CAS  Google Scholar 

  10. Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831. doi:10.1021/ja2010175

    Article  CAS  Google Scholar 

  11. Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 53(7):1193–1204. doi:10.1080/00222348.2013.879804

    Article  CAS  Google Scholar 

  12. El-Hag Ali A, Abd El-Rehim HA, Hegazy E-SA, Ghobashy MM (2006) Synthesis and electrical response of acrylic acid/vinyl sulfonic acid hydrogels prepared by γ-irradiation. Radiat Phys Chem 75(9):1041–1046. doi:10.1016/j.radphyschem.2005.05.022

    Article  CAS  Google Scholar 

  13. El-Hag Ali Said A (2005) Radiation synthesis of interpolymer polyelectrolyte complex and its application as a carrier for colon-specific drug delivery system. Biomaterials 26(15):2733–2739. doi:10.1016/j.biomaterials.2004.07.049

    Article  CAS  Google Scholar 

  14. Sirc J, Hrib J, Vetrik M, Hobzova R, Zak A, Stankova B, Slanar O, Hromadka R, Sandrikova V, Michalek J (2015) The use of a hydrogel matrix for controlled delivery of niacin to the gastrointestinal tract for treatment of hyperlipidemia. Physiol Res/Academia Scientiarum Bohemoslovaca 64(Suppl 1):S51–S60

    CAS  Google Scholar 

  15. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670. doi:10.1016/j.addr.2006.09.020

    Article  CAS  Google Scholar 

  16. El-Hag Ali A, AlArifi A (2009) Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohydr Polym 78(4):725–730. doi:10.1016/j.carbpol.2009.06.009

    Article  CAS  Google Scholar 

  17. Raafat AI (2010) Gelatin based pH-sensitive hydrogels for colon-specific oral drug delivery: synthesis, characterization, and in vitro release study. J Appl Polym Sci 118(5):2642–2649. doi:10.1002/app.32601

    Article  CAS  Google Scholar 

  18. El-Hag Ali A, Abd El-Rehim HA, Kamal H, Hegazy DESA (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci Part A 45(8):628–634. doi:10.1080/10601320802168751

    Article  CAS  Google Scholar 

  19. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B 113:223–229. doi:10.1016/j.colsurfb.2013.09.009

    Article  CAS  Google Scholar 

  20. Rapoport N, Gupta R, Kim Y-S, O’Neill BE (2015) Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: insight through intravital imaging. J Controll Releas 206:153–160. doi:10.1016/j.jconrel.2015.03.010

    Article  CAS  Google Scholar 

  21. Sundar S, Mariappan R, Piraman S (2014) Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technol 266:321–328. doi:10.1016/j.powtec.2014.06.033

    Article  CAS  Google Scholar 

  22. Xue M, Hu S, Lu Y, Zhang Y, Jiang X, An S, Guo Y, Zhou X, Hou H, Jiang C (2015) Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm 495(2):771–782. doi:10.1016/j.ijpharm.2015.08.056

    Article  CAS  Google Scholar 

  23. Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46(14):2376–2378. doi:10.1039/C000051E

    Article  CAS  Google Scholar 

  24. Sun S, Wu P (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21(12):4095. doi:10.1039/c1jm10276a

    Article  CAS  Google Scholar 

  25. Miao W, Shim G, Kang CM, Lee S, Choe YS, Choi H-G, Oh Y-K (2013) Cholesteryl hyaluronic acid-coated, reduced graphene oxide nanosheets for anti-cancer drug delivery. Biomaterials 34(37):9638–9647. doi:10.1016/j.biomaterials.2013.08.058

    Article  CAS  Google Scholar 

  26. Aderibigbe BA, Owonubi SJ, Jayaramudu J, Sadiku ER, Ray SS (2015) Targeted drug delivery potential of hydrogel biocomposites containing partially and thermally reduced graphene oxide and natural polymers prepared via green process. Colloid Polym Sci 293(2):409–420. doi:10.1007/s00396-014-3400-z

    Article  CAS  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. doi:10.1039/B917103G

    Article  CAS  Google Scholar 

  28. Liao K-H, Mittal A, Bose S, Leighton C, Mkhoyan KA, Macosko CW (2011) Aqueous only route toward graphene from graphite oxide. ACS Nano 5(2):1253–1258. doi:10.1021/nn1028967

    Article  CAS  Google Scholar 

  29. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530. doi:10.1021/ma100572e

    Article  CAS  Google Scholar 

  30. Choi KS, Liu F, Choi JS, Seo TS (2010) Fabrication of free-standing multilayered graphene and poly(3,4-ethylenedioxythiophene) composite films with enhanced conductive and mechanical properties. Langmuir 26(15):12902–12908. doi:10.1021/la101698j

    Article  CAS  Google Scholar 

  31. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205. doi:10.1016/j.carbon.2010.09.004

    Article  CAS  Google Scholar 

  32. Zhao X, Zhang Q, Hao Y, Li Y, Fang Y, Chen D (2010) Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules 43(22):9411–9416. doi:10.1021/ma101456y

    Article  CAS  Google Scholar 

  33. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682. doi:10.1021/nl080604h

    Article  CAS  Google Scholar 

  34. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  35. Chandra S, Sahu S, Pramanik P (2010) A novel synthesis of graphene by dichromate oxidation. Mater Sci Eng B 167(3):133–136. doi:10.1016/j.mseb.2010.01.029

    Article  CAS  Google Scholar 

  36. Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112(45):17554–17558. doi:10.1021/jp806751k

    Article  CAS  Google Scholar 

  37. Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94(1):339–344. doi:10.1016/j.carbpol.2013.01.065

    Article  CAS  Google Scholar 

  38. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88. doi:10.1016/j.jconrel.2013.10.017

    Article  CAS  Google Scholar 

  39. Zhang J, Wang Q, Wang A (2010) In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater 6(2):445–454. doi:10.1016/j.actbio.2009.07.001

    Article  CAS  Google Scholar 

  40. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564. doi:10.1021/la801744a

    Article  CAS  Google Scholar 

  41. Cárdenas G, Muñoz C, Carbacho H (2000) Thermal properties and TGA–FTIR studies of polyacrylic and polymethacrylic acid doped with metal clusters. Eur Polym J 36(6):1091–1099. doi:10.1016/S0014-3057(99)00187-1

    Article  Google Scholar 

  42. Luo Y-L, Wei Q-B, Xu F, Chen Y-S, Fan L-H, Zhang C-H (2009) Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Mater Chem Phys 118(2–3):329–336. doi:10.1016/j.matchemphys.2009.07.063

    Article  CAS  Google Scholar 

  43. Colombo P, Bettini R, Santi P, Peppas NA (2000) Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today 3(6):198–204. doi:10.1016/S1461-5347(00)00269-8

    Article  CAS  Google Scholar 

  44. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controll Releas 5(1):23–36. doi:10.1016/0168-3659(87)90034-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany Ismael Raafat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raafat, A.I., Ali, A.EH. pH-controlled drug release of radiation synthesized graphene oxide/(acrylic acid-co-sodium alginate) interpenetrating network. Polym. Bull. 74, 2045–2062 (2017). https://doi.org/10.1007/s00289-016-1818-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1818-9

Keywords

Navigation