Skip to main content
Log in

Synthesis of poly(n-octadecyl methacrylate-co-2-hydroxyethyl methacrylate) copolymer and their utilization as polymeric stabilizer in the preparation of PCL microspheres

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(n-octadecyl methacrylate-co-2-hydroxyethyl methacrylate) [poly(OMA-co-HEMA)] block copolymers were synthesized by free radical polymerization from n-octadecyl methacrylate (OMA) and 2-hydroxyethyl methacrylate (HEMA) and these copolymers have been assessed as stabilizer in the preparation of polycaprolactone (PCL) microspheres using non-aqueous dispersion polymerization. The copolymer poly(OMA-co-HEMA) has been used as in situ stabilizer in the preparation of PCL microspheres at 80 °C. Spherical PCL microspheres are found to be well dispersed and uniform in size which demonstrated the efficient of OMA: HEMA copolymer as replacement of preformed stabilizer in synthesis of PCL microspheres. The factors affecting in the preparation of PCL microspheres such as polymer molecular weights and molecular weight distribution, particle size and distribution and morphology were studied. The synthesized poly(OMA-co-HEMA) copolymer used as in situ stabilizer is characterized by FT-IR, NMR, XRD and GPC techniques. The morphology and particle sizes of the prepared microspheres are observed by field emission scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  2. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J Royal Soc Interface 4:999–1030

    Article  CAS  Google Scholar 

  3. Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng/Biotech 102:47–90

    CAS  Google Scholar 

  4. Yang Y, Chung T, Ng NP (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22:231–241

    Article  CAS  Google Scholar 

  5. Rajput MS, Agrawal P (2010) Microspheres in cancer therapy. Ind J Cancer 47:458–468

    Article  CAS  Google Scholar 

  6. Egilmez NK, Jong YS, Sabel MS, Jacob JS, Mathiowitz E, Bankert RB (2000) In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res 60:3832–3837

    CAS  Google Scholar 

  7. Sapin A, Garcion E, Clavreul A, Lagarce F, Benoit JP, Mene P (2006) Development of new polymer-based particulate systems for anti-glioma vaccination. Int J Pharm 309:1–5

    Article  CAS  Google Scholar 

  8. Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18:52–57

    Article  CAS  Google Scholar 

  9. Ishizu K, Fukutomi T (1988) Core-shell type polymer microspheres prepared from block copolymers. J Polym Sci Part C Polym Lett 26:281–286

    Article  CAS  Google Scholar 

  10. Li Z, Wei X, Ngai T (2011) Controlled production of polymer microspheres from microgel-stabilized high internal phase emulsions. Chem Commun 47:331–333

    Article  CAS  Google Scholar 

  11. Kang F, Jiang G, Hinderliter A, DeLuca PP, Singh J (2002) Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients. J Pharm Res 19:629–633

    Article  CAS  Google Scholar 

  12. Liu M, Chen L, Zhao Y, Gan L, Zhu D, Xiong W, Lv Y, Xu Z, Hao Z, Chen L (2012) Preparation, characterization and properties of liposome-loaded polycaprolactone microspheres as a drug delivery system. Colloids Surf A Physicochem Eng Asp 395:131–136

    Article  CAS  Google Scholar 

  13. Xu W, Wang L, Ling Y, Wei K, Zhong S (2014) Enhancement of compressive strength and cytocompatibility using apatite coated hexagonal mesoporous silica/poly(lactic acid-glycolic acid) microsphere scaffolds for bone tissue engineering. RSC Adv 4:13495–13501

    Article  CAS  Google Scholar 

  14. Penfold HV, Holder SJ, McKenzie BE (2010) Octadecyl acrylate—Methyl methacrylate block and gradient copolymers from ATRP: comb-like stabilizers for the preparation of micro- and nano-particles of poly(methyl methacrylate) and poly(acrylonitrile) by non-aqueous dispersion polymerization. Polymer 51:1904–1913

    Article  CAS  Google Scholar 

  15. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1996) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7:23–38

    Article  Google Scholar 

  16. Srivastava S, Sinha VR (2013) Stavudine loaded biodegradable polymeric microspheres as a depot system for parenteral delivery. Int J Pharm Sci Drug Res 5:1–13

    CAS  Google Scholar 

  17. Gabikian P, Tyler BM, Zhang I, Li KW, Brem H, Walter KA (2014) Radiosensitization of malignant gliomas following intracranial delivery of paclitaxel biodegradable polymer microspheres: laboratory investigation. J Neurosurg 120:1078–1085

    Article  CAS  Google Scholar 

  18. Brem H, Gabikian P (2001) Biodegradable polymer implants to treat brain tumors. J Control Release 74:63–67

    Article  CAS  Google Scholar 

  19. Barrett KEJ (1975) Dispersion polymerization in organic media. Wiley, New York

    Google Scholar 

  20. Song J, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307

    Article  CAS  Google Scholar 

  21. Jongpaiboonkit L, Ford TF, Murphy WL (2009) Growth of hydroxyapatite coatings on biodegradable polymer microspheres. ACS Appl Mater Interfaces 1:1504–1511

    Article  CAS  Google Scholar 

  22. Hirzinger B, Helmstedt M, Stejskal J (2000) Light scattering studies on core–shell systems: determination of size parameters of sterically stabilized poly(methylmethacrylate) dispersions. Polymer 41:2883–2891

    Article  CAS  Google Scholar 

  23. Klein SM, Manoharan VN, Pine DJ, Lange FF (2003) Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym Sci 282:7–13

    Article  CAS  Google Scholar 

  24. Garcıa I, Tercjak A, Rueda L, Mondragon I (2008) Self-assembled nanomaterials using magnetic nanoparticles modified with polystyrene brushes and poly(styrene-b-butadiene-b-styrene). Macromolecules 41:9295–9298

    Article  Google Scholar 

  25. Atanase LI, Riess G (2011) Block copolymers as polymeric stabilizers in non-aqueous emulsion polymerization. Polym Int 11:1563–1573

    Article  Google Scholar 

  26. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16

    Article  CAS  Google Scholar 

  27. Yamamoto T, Kawaguchi K (2016) Relationship between surface potential and particle size in soap-free emulsion copolymerization of styrene and methyl methacrylate using a water- or oil-soluble initiator. J Colloid Polym Sci 294:281–284

    Article  CAS  Google Scholar 

  28. Reddy KR, Sina BC, Ryua KS, Kimb JC, Chungc H, Leea Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    Article  CAS  Google Scholar 

  29. Reddy KR, Park W, Sin BC, Noh J, Lee Y (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335:34–39

    Article  CAS  Google Scholar 

  30. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B Physics 51:197–207

    Article  CAS  Google Scholar 

  31. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/Poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750

    Article  CAS  Google Scholar 

  32. Reddy KR, Lee KP, Gopalan AI (2007) Self-assembly directed synthesis of poly(ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotech 7:3117–3125

    Article  CAS  Google Scholar 

  33. Reddy KR, Lee KP, Gopalan AI, Showkat A (2007) Synthesis and properties of magnetite/poly(aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocomposites. Polym Adv Technol 18:38–43

    Article  CAS  Google Scholar 

  34. Klapper M, Nenov S, Haschick R, Muller K, Mullen K (2008) Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res 41:1190–1201

    Article  CAS  Google Scholar 

  35. Paaver U, Tamm I, Laidmae I, Lust A, Kirsimae K, Veski P, Kogermann K, Heinämäki J (2014) Soluplus graft copolymer: potential novel carrier polymer in electrospinning of nanofibrous drug delivery systems for wound therapy. BioMed Res Int 2014:1–7

    Article  Google Scholar 

  36. Lu Y, Liu L, Guo S (2007) Novel amphiphilic ternary polysaccharide derivates chitosan-g- PCL-b-MPEG: synthesis, characterization, and aggregation in aqueous solution. Biopolymers 86:403–408

    Article  CAS  Google Scholar 

  37. Jakubowski W, Lutz J, Slomkowski S, Matyjaszewski K (2005) Block and random copolymers as surfactants for dispersion polymerization I. Synthesis via atom transfer radical polymerization and ring-opening polymerization. J Polym Sci Part A Polym Chem 43:1498–1510

    Article  CAS  Google Scholar 

  38. Muranaka M, Kitamura Y, Yoshizawa H (2007) Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA copolymeric dispersion stabilizer. Colloid Polym Sci 285:1441–1448

    Article  CAS  Google Scholar 

  39. Sugihara S, Blanazs A, Armes SP, Ryan AJ, Lewis AL (2011) Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J Am Chem Soc 133:15707–15713

    Article  CAS  Google Scholar 

  40. Reddy KR, Raghu AV, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomer Polym 12:109–118

    Article  CAS  Google Scholar 

  41. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51

    Article  CAS  Google Scholar 

  42. Shiho H, DeSimone JM (2001) Dispersion polymerization of glycidyl methacrylate in supercritical carbon dioxide. Macromolecules 34:1198–1203

    Article  CAS  Google Scholar 

  43. Canelas DA, Betts DE, DeSimone JM (1996) Dispersion polymerization of styrene in supercritical carbon dioxide: importance of effective surfactants. Macromolecules 29:2818–2821

    Article  CAS  Google Scholar 

  44. Giles MR, O’Connor SJ, Nay JN, Winder RJ, Howdle SM (2000) Novel graft stabilizers for the free radical polymerization of methyl methacrylate in supercritical carbon dioxide. Macromolecules 33:1996–1999

    Article  CAS  Google Scholar 

  45. Saikia PJ, Lee JM, Lee BH, Choe SJ (2007) Influence of a reversible addition–fragmentation chain transfer agent in the dispersion polymerization of styrene. J Polym Sci Part A Polym Chem 45:348–360

    Article  CAS  Google Scholar 

  46. Saikia PJ, Lee JM, Lee BH, Choe SJ (2007) Reversible addition fragmentation chain transfer mediated dispersion polymerization of styrene. Macromol Symp 248:249–258

    Article  CAS  Google Scholar 

  47. Song J, Tronc F, Winnik MA (2004) Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. J Am Chem Soc 126:6562–6563

    Article  CAS  Google Scholar 

  48. Saikia PJ, Lee JM, Lee BH, Choe SJ (2008) Reaction parameters in the RAFT mediated dispersion polymerization of styrene. J Polym Sci Part A Polym Chem 46:872–885

    Article  CAS  Google Scholar 

  49. Shen S, Sudol ED, El-Aasser MS (1993) Control of particle size in dispersion polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 31:1393–1402

    Article  CAS  Google Scholar 

  50. Ober CK, Lok KB, Hair ML (1985) Monodispersed, micron-sized polystyrene particles by dispersion polymerization. J Polym Sci Polym Lett 23:103–108

    Article  CAS  Google Scholar 

  51. Gabaston LI, Jackson RA, Armes SP (1998) Living free-radical dispersion polymerization of styrene. Macromolecules 31:2883–2888

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr D. Ramaiah, Director, CSIR-NEIST, Jorhat, Assam for permission to publish the results to the CSIR Network Project, M2D (CSC-0134) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash J. Saikia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huda, M.K., Das, P.P., Saikia, P.J. et al. Synthesis of poly(n-octadecyl methacrylate-co-2-hydroxyethyl methacrylate) copolymer and their utilization as polymeric stabilizer in the preparation of PCL microspheres. Polym. Bull. 74, 1661–1676 (2017). https://doi.org/10.1007/s00289-016-1795-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1795-z

Keywords

Navigation