Skip to main content

Advertisement

Log in

Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards MCF-7

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer matrix type chitosan/multiwalled carbon nanotube nanocomposite and 5-fluorouracil encapsulated chitosan/multiwalled carbon nanotube nanocomposite have been successfully synthesized by the chemical method. The prepared nanocomposites were characterized using XRD, FTIR, UV, HRTEM, SAED and the release profile of 5-FU from the nanocomposite system has been evaluated. The XRD pattern of the chitosan/multiwalled carbon nanotube nanocomposite shows the presence of planes corresponding to both chitosan and MWCNT and that of drug-encapsulated nanocomposite shows the presence of peaks of 5-fluorouracil in addition to the other two moieties. Binding of carbon nanotube to the NH2 and OH groups of chitosan has been elucidated using FTIR. The encapsulation of 5-fluorouracil to the nanocomposite has been verified using elemental mapping and SAED studies apart from XRD. The encapsulation efficiency of 5-FU into the nanocomposite has been calculated and is 97 %. The cytotoxicity of the nanocomposite towards the breast cancer cell line (MCF-7) has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  2. Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172(12):1487–1490. doi:10.1164/rccm.200504-613PP

    Article  Google Scholar 

  3. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14(7–8):316–323. doi:10.1016/S1369-7021(11)70161-4

    Article  CAS  Google Scholar 

  4. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013:12. doi:10.1155/2013/578290

    Google Scholar 

  5. Shao-Feng W, Lu S, Wei-De Z, Yue-Jin T (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072

    Article  Google Scholar 

  6. Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6(1):555. doi:10.1186/1556-276X-6-555

    Article  Google Scholar 

  7. Ragupathy D, Gopalan AI, Lee K-P (2009) Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan–ionic liquid matrix towards improved performance for a glucose sensor. Electrochem Commun 11(2):397–401. doi:10.1016/j.elecom.2008.11.048

    Article  CAS  Google Scholar 

  8. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2011) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Phys 51(1):197–207. doi:10.1080/00222348.2011.583193

    Article  Google Scholar 

  9. Reddy KR, Lee K-P, Gopalan AI, Kim MS, Showkat AM, Nho YC (2006) Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J Polym Sci Part A Polym Chem 44(10):3355–3364. doi:10.1002/pola.21451

    Article  CAS  Google Scholar 

  10. Lee Y, Kim S, H-i Lee, Jeong H, Raghu A, Reddy K, Kim B (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71. doi:10.1007/s13233-011-0106-7

    Article  CAS  Google Scholar 

  11. Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159(7–8):595–603. doi:10.1016/j.synthmet.2008.11.030

    Article  CAS  Google Scholar 

  12. Seki N, Arai T, Suzuki Y, Kawakami H (2012) Novel polyimide-based electrospun carbon nanofibers prepared using ion-beam irradiation. Polymer 53(10):2062–2067. doi:10.1016/j.polymer.2012.03.026

    Article  CAS  Google Scholar 

  13. Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem 48(7):1477–1484. doi:10.1002/pola.23883

    Article  CAS  Google Scholar 

  14. Mota-Morales JD, Gutierrez MC, Ferrer ML, Jimenez R, Santiago P, Sanchez IC, Terrones M, Del Monte F, Luna-Barcenas G (2013) Synthesis of macroporous poly(acrylic acid)-carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J Mater Chem A 1(12):3970–3976. doi:10.1039/C3TA01020A

    Article  CAS  Google Scholar 

  15. Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Phys 53(7):1193–1204. doi:10.1080/00222348.2013.879804

    Article  CAS  Google Scholar 

  16. Lim EK, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Kim E, Haam S, Suh JS, Chung SJ, Huh YM (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8(1):467. doi:10.1186/1556-276X-8-467

    Article  Google Scholar 

  17. Olivas-Armendariz I, Martel-Estrada SA, Mendoza-Duarte ME, Jiménez-Vega F, García-Casillas P, Martínez-Pérez CA (2013) Biodegradable chitosan/multiwalled carbon nanotube composite for bone tissue engineering. J Biomater Nanotechnol 04(02):204–211. doi:10.4236/jbnb.2013.42025

    Article  Google Scholar 

  18. Kumar B, Feller JF, Castro M, Lu J (2010) Conductive bio-polymer nano-composites (CPC): chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Talanta 81(3):908–915. doi:10.1016/j.talanta.2010.01.036

    Article  CAS  Google Scholar 

  19. Xiahui P, Qiang Z, Dongming P, Jingyu L, Qiuli D, Chenxi Z, Lini T, Feipeng J, Linqui L, Xiaomei W (2013) Sustained release of naproxen in a new kind delivery system of carbon nanotubes hydrogel. Iran J Pharm Res 12:581–586

    Google Scholar 

  20. Mohanasrinivasan V, Mishra M, Paliwal J, Singh S, Selvarajan E, Suganthi V, Subathra Devi C (2014) Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. Biotech 4(2):167–175. doi:10.1007/s13205-013-0140-6

    Google Scholar 

  21. AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem 2012:6. doi:10.1155/2012/840591

  22. Marroquin J, Kim HJ, Jung D-H, Rhee K-Y (2012) Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films. Carbon Lett 13(2):126–129. doi:10.5714/cl.2012.13.2.126

    Article  Google Scholar 

  23. Jong-Whan R, Seok-In H, Hwan-Man P, Perry KWN (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  Google Scholar 

  24. Kasaai MR (2011) The use of various types of nmr and IR spectroscopy for structural characterization of chitin and chitosan. In: Kim S-K (ed) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC press, Taylor & Francis, USA

  25. Gwen L, Imelda K, Barry D, Adrienne C-T, Llewellyn R, Peter F, Lisbeth G (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541

    Article  Google Scholar 

  26. He L, Yao L, Yang D, Cheng Q, Sun J, Song R, Hao Y (2011) Preparation and characterization of chitosan-blended multiwalled carbon nanotubes. J Macromol Sci Phys 50(12):2454–2463. doi:10.1080/00222348.2011.562093

    Article  CAS  Google Scholar 

  27. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623. doi:10.1016/j.carbon.2006.10.010

    Article  CAS  Google Scholar 

  28. Yang B, Ren L, Li L, Tao X, Shi Y, Zheng Y (2013) The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy. Analyst 138(21):6671–6676. doi:10.1039/C3AN01129A

    Article  CAS  Google Scholar 

  29. Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Euro J Pharm Sci 13(2):123–133. doi:10.1016/S0928-0987(01)00095-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author (E.A.K.N) acknowledges UGC non-NET for its financial support in the form of fellowship. The National Center for Nanoscience and Nanotechnology, University of Madras, is acknowledged for the HRTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stephen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivethaa, E.A.K., Dhanavel, S., Narayanan, V. et al. Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards MCF-7. Polym. Bull. 73, 3221–3236 (2016). https://doi.org/10.1007/s00289-016-1651-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1651-1

Keywords

Navigation