Skip to main content
Log in

Economical and environmentally friendly synthesis of strong cation-exchange resins from macroporous styrene–divinylbenzene copolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the process of strong acid resin synthesis, the process step of acetone washing is meant to extract diluent and homopolymer/oligomers from styrene–divinylbenzene base copolymer. Acetone accounts for ~80 % of the cost of the chemicals involved in the synthesis of the copolymer. Acetone also causes environmental pollution and poses health risks to workers. This study demonstrates that the acetone washing can be eliminated in the case of a broad range of solvents commonly employed as diluents in the synthesis of copolymers. Specifically, hydrocarbons such as petroleum ether, isooctane, n-heptane, xylene and toluene can be extracted based on steam distillation phenomena during the curing of the copolymer; esters such as diethylphthalate and butyl stearate are sulfonated and/or hydrolyzed and washed with water; alcohols such as 1-hexanol, tert-amylalcohol, benzoyl alcohol, and ketones such as cyclohexanone are partially soluble in water and can be washed with hot water. The residual homopolymers/oligomers are sulfonated and washed with water. Residual esters have no negative effect and traces of residual alcohols or ketones either have no negative effect or they significantly increase the sulfonation of the copolymer compared to that of acetone-washed copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dorfner K (1991) Ion exchangers. Walter de Gruyter, New York

    Book  Google Scholar 

  2. Kun KA, Kunin R (1968) Macroreticular resins. III. Formation of macroreticular styrene–divinylbenzene copolymers. J Polym Sci A-1 Polym Chem 6:2689–2701

    Article  CAS  Google Scholar 

  3. Seidl J, Malinsky J, Dusek K, Heitz W (1967) Macroporous styrene–divinylbenzene copolymers and their use in chromatography and for the preparation of ion exchangers. Adv Polym Sci 5:113–213

    Article  CAS  Google Scholar 

  4. Watters JC, Smith TG (1979) Pilot-scale synthesis of macroporous styrene–divinylbenzene copolymers. Ind Eng Chem Process Des Dev 18:591–594

    Article  CAS  Google Scholar 

  5. Okay O (1999) Formation of macroporous styrene–divinylbenzene copolymer networks: theory vs. experiments. J Appl Polym Sci 74:2181–2195

    Article  CAS  Google Scholar 

  6. Durie S, Jerabek K, Mason C, Sherrington DC (2002) One-pot synthesis of branched poly(styrene–divinylbenzene) suspension polymerized resins. Macromolecules 35:9665–9672

    Article  CAS  Google Scholar 

  7. Arshady R (1991) Beaded polymer supports and gels: I. Manufacturing technique. J Chromatogr 586:181–197

    Article  CAS  Google Scholar 

  8. Arshady R (1991) Beaded polymer supports and gels: II. Physico-chemical criteria and functionalization. J Chromatogr 586:199–219

    Article  CAS  Google Scholar 

  9. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779

    Article  CAS  Google Scholar 

  10. Liu Q, Wang L, Xiao A (2007) Research progress in macroporous styrene–divinylbenzene co-polymer microspheres. Des Monomers Polym 10:405–423

    CAS  Google Scholar 

  11. Brooks BW (2010) Suspension polymerization processes. Chem Eng Technol 33:1737–1744

    Article  CAS  Google Scholar 

  12. Gokmen MT, Du Prez FE (2012) Porous polymer particles—a comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37:365–405

    Article  CAS  Google Scholar 

  13. Diego CG, Cuellar J (2005) Synthesis of macroporous poly (styrene-co-divinylbenzene) microparticles using n-heptane as the porogen: quantitative effects of the DVB concentration and the monomeric fraction on their structural characteristics. Ind Eng Chem Res 44:8237–8247

    Article  Google Scholar 

  14. Diego CG, Cuellar J (2006) Determination of the quantitative relationships between the synthesis conditions of macroporous poly (styrene-co-divinylbenzene) microparticles and the characteristics of their behavior as adsorbents using bovine serum albumin as a model macromolecule. Ind Eng Chem Res 45:3624–3632

    Article  Google Scholar 

  15. Dragan ES, Avram E, Dinu MV (2006) Organic ion exchangers as beads. Synthesis, characterization and applications. Polym Adv Technol 17:571–578

    Article  CAS  Google Scholar 

  16. Malik MA, Ali SW, Waseem S (2006) A simple method for estimating parameters representing macroporosity of porous styrene–divinylbenzene copolymers. J Appl Polym Sci 99:3565–3570

    Article  CAS  Google Scholar 

  17. Al-Sabti MD, Jawad JK, Jacob WF (2007) Preparation of macroporous styrene–divinylbenzene copolymers. Eng Technol 25:1041–1048

    Google Scholar 

  18. Scheler SA (2007) A novel approach to the interpretation and prediction of solvent effects in the synthesis of macroporous polymers. J Appl Polym Sci 105:3121–3131

    Article  CAS  Google Scholar 

  19. Diego CG, Cuellar J (2008) Design of polymeric microparticles with improved structural properties: influence of ethylstyrene monomer and of high proportions of crosslinker. Eur Polym J 44:1487–1500

    Article  Google Scholar 

  20. Maria LCS, Simplico S, Ribeiro CAB, Costa MAS, Silva MR, Wang SH, Amico SC (2008) Preparation and characterization of crosslinked resins containing ferrite particles. Polym Eng Sci 48:1878–1884

    Article  CAS  Google Scholar 

  21. Leng W, Zhou S, You B, Wu L (2010) Formation of sulfonated aromatic ketone chromophores within styrene–acrylic acid copolymers and their pH-responsive color change. Langmuir 26:17836–17837

    Article  CAS  Google Scholar 

  22. Nodehi A, Hajiebrahimi M, Parvazinia M, Shahrokhi M, Abedini H (2011) Correlations for prediction of specific surface area and bulk and apparent densities of porous styrene–divinylbenzene copolymers. J Appl Polym Sci 120:1942–1949

    Article  CAS  Google Scholar 

  23. Topp NE, Pepper KW (1949) 690. Properties of ion-exchange resins in relation to their structure. Part I. Titration curves. J Chem Soc 3299–3303. doi:10.1039/JR940003299

  24. Pepper KW (1951) Sulphonated cross-linked polystyrene: a monofunctional cation-exchange resin. J Appl Chem 1:124–132

    Article  CAS  Google Scholar 

  25. Roth HH (1957) Sulfonation of poly(viny1 aromatics). Ind Eng Chem 49:1820–1822

    Article  CAS  Google Scholar 

  26. Ahmed M, Malik MA, Pervez S, Raffiq M (2004) Effect of porosity on sulfonation of macroporous styrene–divinylbenzene beads. Eur Polym J 40:1609–1630

    Article  CAS  Google Scholar 

  27. Oliveira AJB, Aguiar AP, Aguiar MRMP, Maria LS (2005) How to maintain the morphology of styrene–divinylbenzene copolymer beads during the sulfonation reaction. Mater Lett 59:1089–1094

    Article  Google Scholar 

  28. Toro CA, Rodrigo R, Cuellar J (2008) Sulfonation of macroporous poly(styrene-co-divinylbenzene) beads: effect of the proportion of isomers on their cation exchange capacity. React Funct Polym 68:1325–1336

    Article  CAS  Google Scholar 

  29. Malik MA (2009) Carbonyl groups in sulfonated styrene–divinylbenzene macroporous resins. Ind Eng Chem Res 48:6961–6965

    Article  CAS  Google Scholar 

  30. Toro CA, Rodrigo R, Cuellar J (2009) Kinetics of sulfonation of macroporous poly(styrene-co-divinylbenzene) microparticles. Chem Eng Trans 17:49–54

    Google Scholar 

  31. Malik MA, Ali SW, Ahmed I (2010) Sulfonated styrene–divinylbenzene resins: optimizing synthesis and estimating characteristics of the base copolymers and the resins. Ind Eng Chem Res 49:2608–2612

    Article  CAS  Google Scholar 

  32. Ali SW, Malik MA, Ahmed I (2012) Synthesis of strong acid resins from macroporous styrene–divinylbenzene copolymers: is diluent extraction step necessary? Polym Eng Sci 52:2375–2382

    Article  CAS  Google Scholar 

  33. Malik MA, Ali SW, Ahmed I (2013) Economical and environmentally friendly synthesis of porous cation-exchange resins. Soc Plast Eng Plast Res Online. doi:10.2417/spepro.004979

    Google Scholar 

  34. Malik MA, Rehman E, Naheed R, Alam NM (2002) Pore volume determination by density of porous copolymer beads in dry state. React Funct Polym 50:125–130

    Article  CAS  Google Scholar 

  35. Malik MA, Ahmed M, Ikram M (2004) A new method to estimate pore volume of porous styrene–divinylbenzene copolymers. Polym Test 23:835–838

    Article  CAS  Google Scholar 

  36. Jan S, Waqar F, Ali SW, Malik MA, Mohammad B, Khan M, Yawar W (2012) Synthesis and application of a bi-functional sorbent derived form ethylacrylate–divinylbenzene copolymer for the solid-phase extraction of pesticides from water. J Liq Chromatogr Relat Technol 35:700–711

    Article  CAS  Google Scholar 

  37. Ali SW, Waqar F, Malik MA, Yasin T, Muhammad B (2013) Study on the synthesis of a macroporous ethylacrylate–divinylbenzene copolymer, its conversion into a bi-functional cation exchange resin and applications for extraction of toxic heavy metals from wastewater. J Appl Polym Sci 129:2234–2243

    Article  CAS  Google Scholar 

  38. Wheaton RM, Harrington DF (1952) Preparation of cation exchange resins of high physical stability. Ind Eng Chem 44:1796–1800

    Article  CAS  Google Scholar 

  39. Freeman DH, Goldstein S, Schmuckler G (1969) Homogeneous sulfonation of styrene–divinylbenzene copolymers with oleum in organic solvents. Israel J Chem 7:741–749

    Article  CAS  Google Scholar 

  40. Hajos P, Inczedy J (1980) Preparation and ion chromatographic application of surface-sulfonated cation exchangers. J Chromatogr 201:253–257

    Article  CAS  Google Scholar 

  41. Barlik N, Keshinler B (2014) Sulfonation of crosslinked styrene/divinyl benzene copolymer beads formed from porous foam and ion adsorption of copper by them: column adsorption modeling. Water Sci Technol 69:286–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Muhammad Arif Malik gratefully acknowledges financial support from the Frank Reidy Fellowship. Authors thank Mr. Amjad Ali of Applied Chemistry Laboratories, for performing Mercury Porosimetic analysis of the copolymers. Authors also thank Barbara C. Carroll of the Frank Reidy Research Center for Bioelectrics for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.W., Malik, M.A. & Yasin, T. Economical and environmentally friendly synthesis of strong cation-exchange resins from macroporous styrene–divinylbenzene copolymers. Polym. Bull. 73, 559–570 (2016). https://doi.org/10.1007/s00289-015-1502-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1502-5

Keywords

Navigation