Skip to main content
Log in

Synthesis, characterization and supercapacitors of electrically conductive PPy/graphene/rare earth ions composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

PPy/graphene/rare earth ions (PPy/GR/RE3+) were prepared using an in situ chemical polymerization of the monomer in the presence of FeCl3 oxidant and p-toluenesulfonic acid dopant. The PPy/GR/RE3+ composites were characterized by FT-IR spectroscopy, four-point probe conductivity, scanning electron microscopy and transmission electron microscopy. The maximum conductivity of PPy/GR/Gd3+ composites is about 9.71 S/cm found with 1 wt% GR and 2 wt% Gd3+ at room temperature. The capacitance of the composite electrodes was investigated with cyclic voltammetry. As results of this study, the PPy/GR/Gd3+ was effective to obtain fully reversible and very fast faradaic reaction. Hence, the PPy/GR/Gd3+ could contribute to the pseudo-capacitive charge storage. The PPy/GR/Gd3+ exhibited higher specific capacitance of ~238 F/g at 1 A/g current density. Thermal gravimetric analysis demonstrates an improved thermal stability of PPy in the PPy/GR/Gd3+ composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644

    CAS  Google Scholar 

  2. Han YQ, Lu Y (2009) Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Compos Sci Technol 69:1231–1237

    Article  CAS  Google Scholar 

  3. Zhang J, Kong LB, Li H, Luo YC, Kang L (2010) Synthesis of polypyrrole film by pulse galvanostatic method and application as supercapacitor electrode materials. J Mater Sci 45:1947–1954

    Article  CAS  Google Scholar 

  4. Han YQ, Qing XT, Ye SJ, Lu Y (2010) Conducting polypyrrole with nanoscale hierarchical structure. Synth Met 160:1159–1166

    Article  CAS  Google Scholar 

  5. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041–3045

    Article  CAS  Google Scholar 

  6. Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, Chen CM, Hou PX, Liu C, Yang QH (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736

    Article  CAS  Google Scholar 

  7. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  8. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122

    Article  CAS  Google Scholar 

  9. Du X, Guo P, Song H, Chen X (2010) Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim Acta 55:4812–4819

    Article  CAS  Google Scholar 

  10. Chen Y, Zhang X, Yu P, Ma YW (2010) Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J Power Sources 195:3031–3035

    Article  CAS  Google Scholar 

  11. Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  CAS  Google Scholar 

  12. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  13. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928

    Article  CAS  Google Scholar 

  14. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996

    Article  CAS  Google Scholar 

  15. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  16. Zu SZ, Han BH (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113:13651–13657

    Article  CAS  Google Scholar 

  17. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  18. Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Mavinakuli P, Karki AB, Young DP, Guo Z (2010) Conductive molypyrrole/tungsten oxide metacomposites with negative permittivity. J Phys Chem C 114:16335–16342

    Article  CAS  Google Scholar 

  19. Machefaux E, Brousse T, Belanger D, Guyomard D (2007) Supercapacitor behavior of new substituted manganese dioxides. J Power Sources 165:651–655

    Article  CAS  Google Scholar 

  20. Bae HB, Ryu JH, Byun BS, Jung SH, Choi SH (2010) Facile synthesis of novel Pt–Ru@PPy–MWNT electrocatalysts for direct methanol fuel cells. Curr Appl Phys 10:S44–S50

    Article  Google Scholar 

  21. Cui LF, Shen J, Cheng FY, Tao ZL, Chen J (2011) SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sources 196:2195–2201

    Article  CAS  Google Scholar 

  22. Konwer S, Dolui SK (2010) Synthesis and characterization of polypyrrole/graphite composites and study of their electrical and electrochemical properties. Mater Chem Phys 124:738–743

    CAS  Google Scholar 

  23. Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189

    Article  CAS  Google Scholar 

  24. Liu A, Li CH, Bai H, Shi GQ (2010) Electrochemical deposition of polypyrrole/sulfonated graphene composite films. J Phys Chem C 114:22783–22789

    Article  CAS  Google Scholar 

  25. Li J, Xie H, Li Y, Liu J, Li Z (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sources 196:10775–10781

    Article  CAS  Google Scholar 

  26. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial supports of the National Natural Science Foundation of China (51262027), the financial support the Natural Science Foundation of Gansu Province (1104GKCA019; 1010RJZA023), Science and Technology Tackle Key Problem Item of Gansu Province (2GS064-A52-036-08) and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201011). The authors would like to thank the Fundamental Research Funds for the Central Universities (31920130025, 31920130063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Mo, Z. Synthesis, characterization and supercapacitors of electrically conductive PPy/graphene/rare earth ions composites. Polym. Bull. 71, 2173–2184 (2014). https://doi.org/10.1007/s00289-014-1177-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1177-3

Keywords

Navigation