Skip to main content

Advertisement

Log in

Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Electrospun poly(vinyl alcohol) (PVA) fiber and its composites have been widely studied recently. However, most physical properties reported in literature are measured from a nanofiber web. In this study, for the first time, the mechanical properties of individual electrospun fiber, rather than fiber web, of cellulose nanowhisker-reinforced poly(vinyl alcohol) was studied using nanoindentation technique. The modulus is 2.1 GPa for a pure PVA electrospun fiber, and 7.6 GPa for 20.0 wt% cellulose nanowhisker-reinforced PVA electrospun fiber, respectively. The modulus of PVA/cellulose nanowhisker electrospun fibers increases linearly with increasing loading ratio of cellulose nanowhiskers up to 20.0 wt%. The experimental results were compared with that calculated using isotropic and longitudinal Halpin–Tsai models. The modules of the cellulose nanowhiskers are 60–80 % higher than the isotropic model predictions but lower than longitudinal model prediction, suggesting the nanowhiskers are partially aligned to the electrospun fiber direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  2. Sturcova A, Davies GR, Eichhorn SJ (2005) The elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  CAS  Google Scholar 

  3. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307

    Article  CAS  Google Scholar 

  4. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  5. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose. Biomacromolecules 8(1):1–12

    Article  CAS  Google Scholar 

  6. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers banocomposites 1. Structural analysis. Macromolecules 33:8344–8353

    Article  CAS  Google Scholar 

  7. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Envir 10:27–30

    Article  CAS  Google Scholar 

  8. Chazeau L, Cavaille JY, Canova G, Dendievel R, Boutherin B (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808

    Article  CAS  Google Scholar 

  9. Lu T, Wang J, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A-Appl Sci Manuf 39:738–746

    Article  Google Scholar 

  10. Yeo IS, Oh JE, Jeong L, Lee TS, Lee SJ, Park WH, Min BM (2008) Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules 9:1106–1116

    Article  CAS  Google Scholar 

  11. Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165

    Article  CAS  Google Scholar 

  12. Fong H, Liu W, Wang CS, Vaia RA (2002) Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43:775–780

    Article  CAS  Google Scholar 

  13. Wang XF, Um IC, Fang DF, Okamoto A, Hsiao BS, Chu B (2005) Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 46:4853–4867

    Article  CAS  Google Scholar 

  14. Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fiber orientation using a modified electrospinning method. Nanotechnology 16:918–924

    Article  CAS  Google Scholar 

  15. Li D, Wang YL, Xia YN (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366

    Article  Google Scholar 

  16. Tan EPS, Goh CN, Sow CH, Lim CT (2005) Tensile test of a single nanofiber using an atomic force microscope tip. Appl Phys Lett 86(7):1–3

    Article  Google Scholar 

  17. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibers. Nanotechnology 16:208–213

    Article  CAS  Google Scholar 

  18. Duvail JL, Retho P, Godon C, Marhic C, Louarn G, Chauvet O, Cuenot S, Pra N, Demoustier-Champagne S (2003) Physical properties of conducting polymer nanofibers. Synth Metals 135:329–330

    Article  Google Scholar 

  19. Mack JJ, Viculis LM, Ali A, Luoh R, Yang GL, Hahn HT, Ko FK, Kaner RB (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80

    Article  CAS  Google Scholar 

  20. Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers—a review. Compos Sci Tech 66(9):1099–1108

    Article  Google Scholar 

  21. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  22. Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171

    Article  CAS  Google Scholar 

  23. Beake BD, Chen S, Hull JB, Gao F (2002) Nanoindentation behavior of clay/poly(ethylene oxide) nanocomposites. J Nanosci Nanotech 2:73–79

    Article  CAS  Google Scholar 

  24. Bulychev SI, Alekhin VP, Shorshorov MK, Shnyrev AP, Ternovskii GD (1975) Determination of Young’s modulus according to an indentation diagram. Ind Lab 41:1409–1412

    Google Scholar 

  25. Borodich FM, Keer LM (2004) Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc R Soc Lond A 460:507–514

    Article  Google Scholar 

  26. Strader JH, Shim S, Bei H, Oliver WC, Pharry GM (2006) An experimental evaluation of the constant creating the contact stiffness to the contact area in nanoindentation experiments. Phil Mag 86:5285–5298

    Article  CAS  Google Scholar 

  27. Chizhik SA, Gorbunov VV, Luzinov I, Fuchigami N, Tsukruk VV (2001) Surface force spectroscopy of elastomeric nanoscale films. Macromol Symp 167:167–175

    Article  CAS  Google Scholar 

  28. Johnson KL (1995) Contact mechanics and the wear of metals. Wear 190:162–170

    Article  CAS  Google Scholar 

  29. Li XD, Hao HS, Murphy CJ, Caswell KK (2003) Nanoindentation of silver nanowires. Nano Lett 3:1495–1498

    Article  CAS  Google Scholar 

  30. Lee J, Sun QH, Deng YL (2008) Nanocomposites from regenerated cellulose and nanoclay. J Biobased Mater Bioenergy 2:162–168

    Article  Google Scholar 

  31. Liu LQ, Barber AH, Nuriel S, Wagner HD (2005) Properties of functionalized single-wall carbon nanotube/PVA nanocomposites. Adv Funct Mater 15:975–980

    Article  CAS  Google Scholar 

  32. Cheng QZ, Wang SQ (2008) A method for testing the elastic modulus of single cellulosic fibrils via atomic force microscopy. Compos Part A Appl Sci Manuf 39:1838–1843

    Article  Google Scholar 

  33. French AD, Roughead WA, Miller DP (1987) X-ray diffraction studies of ramie cellulose I. ACS Symp Ser 340:15–37

    Article  CAS  Google Scholar 

  34. Rabek JF (1980) Experimental methods in polymer chemistry. Wiley, New York

    Google Scholar 

  35. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–13

    Article  CAS  Google Scholar 

  36. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2871

    Article  CAS  Google Scholar 

  37. Liu LQ, Tasis D, Prato M, Wagner HD (2007) Tensile mechanics of electrospun multiwalled, nanotube/poly(methyl methacrylate) nanofibers. Adv Mater 19:1228–1233

    Article  CAS  Google Scholar 

  38. Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Deng, Y. Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber. Polym. Bull. 70, 1205–1219 (2013). https://doi.org/10.1007/s00289-012-0842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0842-7

Keywords

Navigation