Skip to main content
Log in

Kinetic and thermochemical study of the oxidative polymerization of α-substituted styrenes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This article reports a systematic kinetic study on the oxidative polymerization of α-substituted styrene monomers such as styrene (St), α-methylstyrene (AMS), 4-chloro α-methylstyrene (CAMS), and α-phenylstyrene (APS) in the presence of 2,2′-azobisisobutyronitrile as a free radical initiator at 100 psi oxygen pressure and 40-50 °C in toluene. The rate of oxidative polymerization follows the order: APS > CAMS > AMS > St. Theoretical calculations have been performed using density functional theory to support the order of oxidative polymerization rates. In addition, the synthesis and characterization of poly(4-chloro α-methylstyrene peroxide) (PCAMSP) is reported here for the first time. Elemental analysis and nuclear magnetic resonance spectroscopy confirm the alternating copolymer structure of PCAMSP with –O–O– bonds in the main chain. Thermal degradation studies using differential scanning calorimeter and thermogravimetric analysis reveal that PCAMSP degrades highly exothermically and the average enthalpy of degradation at various heating rates is found to be 48.7 ± 0.6 kcal/mol, which is of the same order reported for other vinyl polyperoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Subramanian K (2003) Formation, degradation, and applications of polyperoxides. Polym Rev 43:323–383

    Google Scholar 

  2. Mogilevich MM (1979) Oxidative polymerisation of vinyl monomers. Russ Chem Rev 48:199–211

    Article  Google Scholar 

  3. Mukundan T, Kishore K (1990) Synthesis, characterization and reactivity of polymeric peroxides. Prog Polym Sci 15:475–505

    Article  CAS  Google Scholar 

  4. Nanda AK, Kishore K (2001) Catalytic oxidative polymerization of vinyl monomers using cobalt phthalocyanine complex and an exploratory investigation on the polymerization of vinyl acetate. Macromolecules 34:1558–1563

    Article  CAS  Google Scholar 

  5. Mukundan T, Bhanu VA, Kishore K (1989) First report of a polymeric peroxide initiated room temperature radical polymerization of vinyl monomers. J Chem Soc Chem Commun 12:780–781

    Article  Google Scholar 

  6. Subramanian K, Kishore K (1997) Kinetics of poly(styrene peroxide) initiated photopolymerization of methyl methacrylate. Polymer 38:527–533

    Article  CAS  Google Scholar 

  7. Subramanian K, Kishore K (1997) Application of polystyrene peroxide as a curative in coating and molding compositions. Eur Polym J 33:1365–1367

    Article  CAS  Google Scholar 

  8. Kishore K, Mukundan T (1986) Poly(styrene peroxide): an auto-combustible polymer fuel. Nature 324:130–131

    Article  CAS  Google Scholar 

  9. Matsumoto A, Higashi H (2000) Convenient synthesis of polymers containing labile bonds in the main chain by radical alternating copolymerization of alkyl sorbates with oxygen. Macromolecules 33:1651–1655

    Article  CAS  Google Scholar 

  10. Fujioka T, Taketani S, Nagasaki T, Matsumoto A (2009) Self-assembly and cellular uptake of degradable and water-soluble polyperoxides. Bioconjugate Chem 20:1879–1887

    Article  CAS  Google Scholar 

  11. Sugimoto Y, Taketani S, Kitamura T, Uda D, Matsumoto A (2006) Regiospecific structure, degradation, and functionalization of polyperoxides prepared from sorbic acid derivatives with oxygen. Macromolecules 39:9112–9119

    Article  CAS  Google Scholar 

  12. Matsumoto A, Taketani S (2006) Regiospecific radical polymerization of a tetrasubstituted ethylene monomer with molecular oxygen for the synthesis of a new degradable polymer. J Am Chem Soc 128:4566–4567

    Article  CAS  Google Scholar 

  13. Matsumoto A, Taketani S (2004) Fabrication and degradation of polyperoxides by a radical chain process under mild conditions. Chem Lett 33:732

    Article  CAS  Google Scholar 

  14. Hatakenaka H, Takahashi Y, Matsumoto A (2003) Degradable polymers prepared from alkyl sorbates and oxygen under atmospheric conditions and precise evaluation of their thermal properties. Polym J 35:640–651

    Article  CAS  Google Scholar 

  15. Sato E, Tamura H, Matsumoto A (2010) Cohesive force change induced by polyperoxide degradation for application to dismantlable adhesion. Appl Mater Interfaces 2:2594–2601

    Article  CAS  Google Scholar 

  16. Mayo FR (1957) The oxidation of unsaturated compounds. V. the effect of oxygen pressure on the oxidation of styrene. J Am Chem Soc 80:2465–2480

    Article  Google Scholar 

  17. Mayo FR, Miller AA (1957) The oxidation of unsaturated compounds. VI. The effect of oxygen pressure on the oxidation of α-methylstyrene. J Am Chem Soc 80:2480–2493

    Article  Google Scholar 

  18. De P, Sathyanarayana DN (2002) High-pressure kinetics of oxidative copolymerization of styrene with α-methylstyrene. Macromol Chem Phys 203:2218–2224

    Article  CAS  Google Scholar 

  19. Frish MJ, Trucks GW, Schlegel HB et al (2004) GAUSSION 03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  20. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1998) Development of the Colic–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  22. Cais RE, Bovey FA (1977) Carbon-13 nuclear magnetic resonance study of the microstructure and molecular dynamics of poly(styrene peroxide). Macromolecules 10:169–178

    Article  CAS  Google Scholar 

  23. Murthy KS, Kishore K, Krishnamohan V (1994) Vinyl monomer based polyperoxides as potential initiators for radical polymerization: an exploratory investigation with poly(alpha-methylstyrene peroxide). Macromolecules 27:7109–7114

    Article  CAS  Google Scholar 

  24. Nanda AK, Kishore K (2001) Stable vinyl polyperoxide: synthesis, characteristics and thermal initiation potentials of poly(α-phenylstyrene peroxide). Macromol Chem Phys 202:2155–2160

    Article  CAS  Google Scholar 

  25. De P, Sathyanarayana DN, Sadasivamurthy P, Sridhar S (2003) Synthesis, spectral characterization, and thermochemical studies of poly(phenyl methacrylate peroxide). J Appl Polym Sci 88:2364–2368

    Article  CAS  Google Scholar 

  26. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  27. De P, Chattopadhyay S, Giridhar M, Sathyanarayana DN (2002) Thermal degradation studies of para-substituted poly(styrene peroxide)s. Polym Degrad Stab 76:511–514

    Article  CAS  Google Scholar 

  28. De P, Sathyanarayana DN, Sadasivamurthy P, Sridhar S (2001) Synthesis, structural characterization, thermal studies and chain dynamics of poly(methacrylonitrile peroxide) by NMR spectroscopy. Polymer 42:8587–8593

    Article  CAS  Google Scholar 

  29. De P, Sathyanarayana DN (2002) Synthesis and characterization of copolyperoxides of indene with styrene, α-methylstyrene, and α-phenylstyrene. J Polym Sci Part B 40:2004–2017

    Article  CAS  Google Scholar 

  30. Latha R, Kannan S (2009) Synthesis, characterization, thermal degradation, and comparative chain dynamics studies of weak-link polysulfide polymers. J Polym Res 16:623–635

    Article  Google Scholar 

  31. Nanda AK, Kishore K (2001) Catalytic radical polymerization of vinyl monomers by cobalt porphyrin complex and metamorphosis of block-into-block copolymer. Polymer 42:2365–2372

    Article  CAS  Google Scholar 

  32. Kishore K, Paramasivam S, Sandhya TE (1996) High-pressure kinetics of vinyl polyperoxides. Macromolecules 29:6973–6978

    Article  CAS  Google Scholar 

  33. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Delhi, p 273

    Book  Google Scholar 

  34. Howard JA, Ingold KU (1965) Absolute rate constant for hydrocarbon autoxidation. Can J Chem 43:2737–2743

    Article  Google Scholar 

  35. Benson SW, Dobis O (1998) Existence of negative activation energies in simple bimolecular metathesis reactions and some observations on too-fast reactions. J Phys Chem A 102:5175–5181

    Article  CAS  Google Scholar 

  36. Dobis O, Benson SW (1993) Reaction of the ethyl radical with oxygen at millitorr pressures at 243–368 K and a study of the Cl + HO2, ethyl + HO2, and HO2 + HO2 reactions. J Am Chem Soc 115:8798–8809

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the partial financial support from Indian Institute of Science Education and Research-Kolkata and Council of Scientific and Industrial Research (CSIR), New Delhi [01(2474)/11/EMR-II]. Sunirmal Pal acknowledges CSIR, Government of India for his fellowship. PKG would like to thank Department of Science and Technology, India (Project No. SR/FT/CS86/2009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyadarsi De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Ghorai, P.K. & De, P. Kinetic and thermochemical study of the oxidative polymerization of α-substituted styrenes. Polym. Bull. 69, 149–161 (2012). https://doi.org/10.1007/s00289-011-0697-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0697-3

Keywords

Navigation