Skip to main content
Log in

NCW2, a Gene Involved in the Tolerance to Polyhexamethylene Biguanide (PHMB), May Help in the Organisation of β-1,3-Glucan Structure of Saccharomyces cerevisiae Cell Wall

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the present work, we provide biological evidences supporting the participation of NCW2 gene in the mechanism responsible for cell tolerance to polyhexamethylene biguanide (PHMB), an antifungal agent. The growth rate of yeast cells exposed to this agent was significantly reduced in ∆ncw2 strain and the mRNA levels of NCW2 gene in the presence of PHMB showed a 7-fold up-regulation. Moreover, lack of NCW2 gene turns yeast cell more resistant to zymolyase treatment, indicating that alterations in the β-glucan network do occur when Ncw2p is absent. Computational analysis of the translated protein indicated neither catalytic nor transmembrane sites and reinforced the hypothesis of secretion and anchoring to cell surface. Altogether, these results indicated that NCW2 gene codes for a protein which participates in the cell wall biogenesis in yeasts and that Ncw2p might play a role in the organisation of the β-glucan assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boorsma A, de Nobel H, ter Riet B, Bargmann B, Brul S, Hellingwerf KJ, Klis FM (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21:413–427

    Article  CAS  PubMed  Google Scholar 

  2. Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaff MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  3. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43(1 suppl):25–30

    Article  PubMed  Google Scholar 

  4. De Lucena RM, Elsztein C, Simões DA, de Morais MA (2012) Participation of CWI, HOG and calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 113:629–640

    Article  PubMed  Google Scholar 

  5. Elsztein C, de Menezes JAS, de Morais MA (2008) Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process. J Ind Microbiol Biotechnol 35:967–973

    Article  CAS  PubMed  Google Scholar 

  6. Elsztein C, de Lucena RM, de Morais Jr MA (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 12:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gasch AP, Spellman PT, Kao CM, Carmel-harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  CAS  PubMed  Google Scholar 

  9. Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, François JM (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357

    Article  CAS  PubMed  Google Scholar 

  10. Lussier M, White A, Sheraton J, Paolo T, Treadwell J, Southard SB, Horenstein CI, Ram AFJ, Kapteyn JC, Roemer TW, Vo DH, Bondoc DC, Zhong WW, Sdicu A, Davies J, Klis FM, Robbinst PW, Bussey H (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147:435–450

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge J (2000) Play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    Article  CAS  PubMed  Google Scholar 

  12. Nobel HD, Ruiz C, Martin H, Morris W, Brul S, Molina M, Klis FM (2000) Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146:2121–2132

    Article  PubMed  Google Scholar 

  13. Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ovalle R, Lim ST, Holder B, Jue CK, Moore CW, Lipke PN (1998) A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14:1159–1166

    Article  CAS  PubMed  Google Scholar 

  15. Pardo M, Monteoliva L, Vazquez P, Martinez R, Molero G, Nombela M, Gil C (2004) PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150:4157–4170

    Article  CAS  PubMed  Google Scholar 

  16. Reinoso-Martín C, Schuller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase c cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2:1200–1210

    Article  PubMed  PubMed Central  Google Scholar 

  17. Terashima H, Yabuki N, Arisawa M, Hamada K, Kitada K (2000) Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol Gen Genet 264:64–74

    Article  CAS  PubMed  Google Scholar 

  18. Yin QY, de Groot PWJ, Dekker HL, de Jong L, Klis FM, de Koster CG (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280:20894–20901

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Marcelo Guerra, Laboratory of Plant Cytogenetics, UFPE, for having allowed us to use fluorescence microscope. This work was supported with Grant and scholarship provided by the cooperation program CAPES-FACEPE/PNPD (project APQ-0201-2.02/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antonio de Morais Jr.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsztein, C., de Lima, R.C.P., de Barros Pita, W. et al. NCW2, a Gene Involved in the Tolerance to Polyhexamethylene Biguanide (PHMB), May Help in the Organisation of β-1,3-Glucan Structure of Saccharomyces cerevisiae Cell Wall. Curr Microbiol 73, 341–345 (2016). https://doi.org/10.1007/s00284-016-1067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1067-z

Keywords

Navigation