Skip to main content
Log in

The Bioinformatics Report of Mutation Outcome on NADPH Flavin Oxidoreductase Protein Sequence in Clinical Isolates of H. pylori

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

frxA gene has been implicated in the metronidazole nitro reduction by H. pylori. Alternatively, frxA is expected to contribute to the protection of urease and to the in vivo survival of H. pylori. The aim of present study is to report the mutation effects on the frxA protein sequence in clinical isolates of H. pylori in our community. Metronidazole resistance was proven in 27 of 48 isolates. glmM and frxA genes were used for molecular confirmation of H. pylori isolates. The primer set for detection of whole sequence of frxA gene for the effect of mutation on protein sequence was used. DNA and protein sequence evaluation and analysis were done by blast, Clustal Omega, and T COFFEE programs. Then, FrxA protein sequences from six metronidazole-resistant clinical isolates were analyzed by web-based bioinformatics tools. The result of six metronidazole-resistant clinical isolates in comparison with strain 26695 showed ten missense mutations. The result with the STRING program revealed that no change was seen after alterations in these sequences. According to consensus data involving four methods, residue substitutions at 40, 13, and 141 increase the stability of protein sequence after mutation, while other alterations decrease. Residue substitutions at 40, 43, 141, 138, 169, and 179 are deleterious, while, V7I, Q10R, V34I, and V96I alterations are neutral. As FrxA contribute to survival of bacterium and in regard to the effect of mutations on protein function, it might affect the survival and bacterium phenotype and it need to be studied more. Also, none of the stability prediction tool is perfect; iStable is the best predictor method among all methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kwon DH, KatoM El-Zaatari FA, Osato MS, Graham DY (2000) Frame-shift mutations in NAD (P) H flavin oxidoreductase encoding gene (frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol Lett 188:197–202

    Article  CAS  PubMed  Google Scholar 

  2. Kwon DH, Hulten K, Kato M, Kim JJ, Lee M, El-Zaatari FAK, Osato MS, Graham DY (2001) DNA sequence analysis of rdxA and frxA from 12 pairs of metronidazole-sensitive and-resistant clinical Helicobacter pylori isolates. Antimicrob Agents Chemother 45:2609–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salzar SC, Lopez IP, Mejia AV, Carranza RC, Pinzon SG, Aguirre E (2005) Promutagen activation by Helicobacter pylori lysate. Rev Int Contam Ambient 21:91–96

    Google Scholar 

  4. Justino MC, Parente MR, Boneca IG, Saraiva LM (2014) FrxA is an S-nitrosoglutathione reductase enzyme that contributes to Helicobacter pylori pathogenicity. FEBS J 281:4495–4505

    Article  CAS  PubMed  Google Scholar 

  5. De Oliveira IM, Bonatto D, Henriques JAP (2010) Nitroreductases: enzymes with environmental, biotechnological and clinical importance. Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 6. Formatex, Badajoz, pp 1008–1019

    Google Scholar 

  6. Yang ZR, Thomson R, McNeil Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 2:3369–3376

    Article  Google Scholar 

  7. Teng S, Srivastava AK, Wang L (2010) Sequence feature-based prediction of protein stability changes upon amino acid substitutions. BMC Genom 1:S5

    Article  Google Scholar 

  8. Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P (2015) MAESTRO-multi agent stability prediction upon point mutations. BMC Bioinformatics 16:116

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34:239–242

    Article  Google Scholar 

  10. Thusberg J, Vihinen M (2006) Bioinformatic analysis of protein structure-function relationships: case study of leukocyte elastase (ELA2) missense mutations. Hum Mutat 27:1230–1243

    Article  CAS  PubMed  Google Scholar 

  11. Capriotti E, Fariselli P, Rossi I, Casadio R (2008) A three-state prediction of single point mutations on protein stability changes. BMC Bioinform 9:S6

    Article  Google Scholar 

  12. Gonzalez MW, Kann MG (2012) Chapter 4: protein interactions and disease. PLoS Comput Biol 8:e1002819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:306–310

    Article  Google Scholar 

  15. Chen J, Shen B (2009) Computational analysis of amino acid mutation: a proteome wide perspective. Curr Proteom 6:228–234

    Article  CAS  Google Scholar 

  16. Hussain MRM, Shaik NA, Al-Aama JY, Asfour HZ, Khan FS, Masoodi TA, Khan MA, Shaik NS (2012) In silico analysis of single nucleotide polymorphisms (SNPs) in human BRAF gene. Gene 508:188–196

    Article  CAS  PubMed  Google Scholar 

  17. Marín-Martín FR, Soler-Rivas C, Martín-Hernández R, Rodriguez-Casado A (2014) A comprehensive in silico analysis of the functional and structural impact of nonsynonymous SNPs in the ABCA1 transporter gene. Cholesterol. doi:10.1155/2014/639751

    PubMed  PubMed Central  Google Scholar 

  18. Mirzaei N, Poursina F, Faghri J, Talebi M, Khataminezhad MR, Hasanzadeh A, Safaei HG (2013) Prevalence of resistance of Helicobacter pylori strains to selected antibiotics in Isfahan, Iran. Jundishapur J Microbiol 6:e6342

    Google Scholar 

  19. Mirzaei N, Poursina F, Moghim S, Rahimi E, Safaei HG (2014) The mutation of the rdxA gene in metronidazole-resistant Helicobacter pylori clinical isolates. Adv Biomed Res 3:90

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gerrits MM, Van der Wouden EJ, Bax DA, Van Zwet AA, Van Vliet AH, de Jong A, Kusters JG, Thijs JC, Kuipers EJ (2004) Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. J Med Microbiol 53:1123–1128

    Article  CAS  PubMed  Google Scholar 

  21. Jeong JY, Mukhopadhyay AK, Akada JK, Dailidiene D, Hoffman PS, Berg DE (2001) Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. J Bacteriol 183:5155–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang YJ, Wu JJ, Sheu BS, Kao AW, Huang AH (2004) The rdxA gene plays a more major role than frxA gene mutation in high-level metronidazole resistance of Helicobacter pylori in Taiwan. Helicobacter 9:400–407

    Article  CAS  PubMed  Google Scholar 

  23. Notredame C, HigginsDG Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  24. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, Mering CV (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:561–568

    Article  Google Scholar 

  26. Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinform 14:S5

    Article  Google Scholar 

  27. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132

    Article  CAS  PubMed  Google Scholar 

  28. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33:72–76

    Article  Google Scholar 

  30. Binh TT, Suzuki R, Trang TTH, Kwon DH, Yamaoka Y (2015) Search for novel candidate mutations for metronidazole resistance in Helicobacter pylori using next-generation sequencing. Antimicrob Agents Chemother 59:2343–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marais A, Bilardi C, Cantet F, Mendz GL, Mégraud F (2003) Characterization of the genes rdxA and frxA involved in metronidazole resistance in Helicobacter pylori. Res Microbiol 154:137–144

    Article  CAS  PubMed  Google Scholar 

  32. Abdollahi H, Savari M, Zahedi MJ, Darvish-Moghadam S, Hayat-Bakhah Abasi M (2011) Study of rdxA gene deletion in metronidazole resistant and sensitive Helicobacter pylori isolates in Kerman, Iran. Jundishapur J Microbiol 4(2):99–104

    Google Scholar 

  33. Chisholm SA, Owen RJ (2003) Mutations in Helicobacter pylori rdxA gene sequences may not contribute to metronidazole resistance. J Antimicrob Chemother 5:995–999

    Article  Google Scholar 

  34. Jenks PJ, Ferrero RL, Labigne A (1999) The role of the rdxA gene in the evolution of metronidazole resistance in Helicobacter pylori. J Antimicrob Chemother 43:753–758

    Article  CAS  PubMed  Google Scholar 

  35. Solcà NM, Bernasconi MV, Piffaretti JC (2000) Mechanism of metronidazole resistance in Helicobacter pylori: comparison of the rdxA gene sequences in 30 strains. Antimicrob Agents Chemother 44:2207–2210

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thusberg J (2010) Molecular effects of missense mutations—bioinformatics analysis of genetic defects. Dissertation, University of Tampere

  37. Brinza D, Zelikovsky A (2006) Combinatorial methods for disease association search and susceptibility prediction. Algorithms in bioinformatics. Springer, Berlin, pp 286–297

    Google Scholar 

  38. Brinza D (2007) Discrete algorithms for analysis of genotype data. Dissertation, Georgia State University

  39. Rodriguez-Casado A (2012) In silico investigation of functional nsSNPs an approach to rational drug design. Res Reports Med Chem 2:31–42

    Article  Google Scholar 

  40. Stefl S, Nishi H, Petukh M, Panchenko AR, Alexov E (2013) Molecular mechanisms of disease-causing missense mutations. J Mol Biol 425(21):3919–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doss CGP, Rajith B, Garwasis N, Mathew PR, Raju AS, Apoorva K, William D, Sadhana NR, Himani T, Dike IP (2012) Screening of mutations affecting protein stability and dynamics of FGFR1-A simulation analysis. Appl Transl Genom 1:37–43

    Article  CAS  Google Scholar 

  42. Zhang Z, Miteva MA, Wang L, Alexov E (2012) Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med. doi:10.1155/2012/805827

    Google Scholar 

  43. Yates CM, Sternberg MJ (2014) Impact of missense variants on protein–protein interactions. eLS

  44. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, Mering CV (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:447–452

    Article  Google Scholar 

  45. Chen JY, Youn E, Mooney SD (2009) Connecting protein interaction data, mutations, and disease using bioinformatics. Methods Mol Biol 541:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fu L, Liang JJN (2003) Alteration of protein–protein interactions of congenital cataract crystallin mutants. Invest Ophthalmol Vis Sci 44:1155–1159

    Article  PubMed  Google Scholar 

  47. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genom Hum Genet 7:61–80

    Article  CAS  Google Scholar 

  48. Zhang Z, Teng S, Wang L, Schwartz CE, Alexov E (2010) Computational analysis of missense mutations causing Snyder-Robinson syndrome. Hum Mutat 31:1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bloom JD, Glassman MJ (2009) Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin. PLoS Comput Biol 5:e1000349

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31:675–684

    Article  CAS  PubMed  Google Scholar 

  51. Reumers J, Schymkowitz J, Rousseau F (2009) Using structural bioinformatics to investigate the impact of non synonymous SNPs and disease mutations: scope and limitations. BMC Bioinform 10:S9

    Article  Google Scholar 

  52. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17:263–270

    Article  PubMed  Google Scholar 

  54. Binh TT, Suzuki R, Kwon DH, Yamaoka Y (2015) Complete genome sequence of a metronidazole-resistant Helicobacter pylori strain. Genome Announc 3:e00051-15

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This study was supported by Grant No: 290054 from Isfahan University of Medical Sciences, Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajieh Ghasemian Safaei.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, N., Poursina, F., Moghim, S. et al. The Bioinformatics Report of Mutation Outcome on NADPH Flavin Oxidoreductase Protein Sequence in Clinical Isolates of H. pylori . Curr Microbiol 72, 596–605 (2016). https://doi.org/10.1007/s00284-016-0992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-0992-1

Keywords

Navigation