Skip to main content
Log in

Concentration-Dependent Mechanism Alteration of Pleurocidin Peptide in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cationic antimicrobial peptides (CAPs) are essential components of the innate immune system. Most CAPs exert antimicrobial effects via membrane-active mechanisms, while high concentrations of CAPs are associated with non-selective cytotoxicity. We originally hypothesized that a sub-lethal concentration of CAPs was able to exert antibacterial activity, by interacting with negatively charged nucleic acids, and not by damaging bacterial membranes. We selected pleurocidin (Ple) and Escherichia coli as experimental models of CAPs and bacteria, respectively. Whereas Ple distinctly acted on bacterial membranes in a concentration-dependent manner, the cell viability was almost similar regardless the peptide concentration. To address how Ple retained its antibacterial activity in a low concentration, we particularly focused on the induction of intracellular apoptosis-like death (ALD). Finally, it was suggested that a sub-lethal concentration of Ple led to ALD in E. coli, mediated by caspase-like protein and RecA. To the best of our knowledge, this is the first study showing that alterations of CAP mechanisms are concentration dependent in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Choi H, Lee DG (2012) Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochim Biophys Acta 1820:1831–1838

    Article  PubMed  CAS  Google Scholar 

  2. Cole AM, Weis P, Diamond G (1997) Isolation and characterization of pleurocidin, antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272:12008–12013

    Article  PubMed  CAS  Google Scholar 

  3. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640

    Article  PubMed  CAS  Google Scholar 

  5. Cruz J, Ortiz C, Guzmán F, Fernández-Lafuente R, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21:2299–2321

    Article  PubMed  CAS  Google Scholar 

  6. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46:561–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H (2014) Apoptosis-like death, an extreme SOS response in Escherichia coli. MBio 5:e01414–e01426

    Article  CAS  Google Scholar 

  8. Fernández De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572

    Article  PubMed  Google Scholar 

  9. González IJ, Desponds C, Schaff C, Mottram JC, Fasel N (2007) Leishmania major metacaspase can replace yeast metacaspases in programmed cell death and has arginine specific cysteine peptidase activity. Int J Parasitol 37:161–172

    Article  PubMed  CAS  Google Scholar 

  10. Hancock RE (1999) Host defence (cationic) peptides: what is their future clinical potential? Drugs 57:469–473

    Article  PubMed  CAS  Google Scholar 

  11. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  12. Hwang PM, Vogel HJ (1998) Structure-function relationships of antimicrobial peptides. Biochem Cell Biol 76:235–246

    Article  PubMed  CAS  Google Scholar 

  13. Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, Lee DG (2007) Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta 1768:1400–1405

    Article  PubMed  CAS  Google Scholar 

  14. Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, Ohisen K, Foster KR, Lopez D (2014) Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158:1060–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  16. Maher S, McClean S (2008) Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol. Biochem Pharmacol 75:1104–1114

    Article  PubMed  CAS  Google Scholar 

  17. Maloy WL, Karl UP (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37:105–122

    Article  PubMed  CAS  Google Scholar 

  18. Merrifield B (1986) Solid phase synthesis. Science 232:341–347

    Article  PubMed  CAS  Google Scholar 

  19. Pandey BK, Srivastava S, Singh M, Ghosh JK (2011) Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J 436:609–620

    Article  PubMed  CAS  Google Scholar 

  20. Saint N, Cadiou H, Bessin Y, Molle G (2002) Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim Biophys Acta 1564:359–364

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt NW, Wong GC (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 17:151–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yoshida K, Mukai Y, Niidome T, Takashi C, Tokunaga Y, Hatakeyama T, Aoyagi H (2001) Interaction of pleurocidin and its analogs with phospholipid membrane and their antibacterial activity. J Pept Res 57:119–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Next-Generation BioGreen 21 Program (No. PJ01104303), by the Rural Development Administration (Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, D.G. Concentration-Dependent Mechanism Alteration of Pleurocidin Peptide in Escherichia coli . Curr Microbiol 72, 159–164 (2016). https://doi.org/10.1007/s00284-015-0937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0937-0

Keywords

Navigation