Skip to main content
Log in

Influence of Process Parameter on Campylobacter spp. Counts on Poultry Meat in a Slaughterhouse Environment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Campylobacter spp. are the most important food-borne pathogens in broilers. Exposure of the consumer can be influenced by the reduction of contaminated broiler meat at various steps along the production line. This study was performed at a poultry slaughterhouse in Germany. Steps within the slaughter process were defined by the slaughterhouse quality control for potential Campylobacter reduction. Their impact was tested for two process variations. The first process variation was the increase of the temperature of the scalding water from 53.0 to 53.9 °C. The second step was the application of an additional outside sprayer which was placed after plucking. The increase of the scalding water temperature was the most effective measure (>2 log reduction), but resulted in defects to the broiler skin. This would limit marketing of fresh broiler meat with skin. The additional water spray after plucking had no additional effect. In fact, numbers of Campylobacter were lower before introduction of the sprayer. In conclusion, modifications of the processing technology have to be evaluated carefully, but can have additional effects for Campylobacter reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anon (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0001:0026:DE:PDF. Accessed 11-2013

  2. Bashor MP, Curtis PA, Keener KM, Sheldon BW, Kathariou S, Osborne JA (2004) Effects of carcass washers on Campylobacter contamination in large broiler processing plants. Poult Sci 83(7):1232–1239

    Article  CAS  PubMed  Google Scholar 

  3. Batz MB, Hoffmann S, Morris JG Jr (2012) Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot 75(7):1278–1291

    Article  PubMed  Google Scholar 

  4. Berrang ME, Bailey JS (2009) On-line brush and spray washers to lower numbers of Campylobacter and Escherichia coli and presence of Salmonella on broiler carcasses during processing. J Appl Poult Res 18:74–78

    Article  Google Scholar 

  5. Bryan FL, Doyle MP (1995) Health risks and consequences of Salmonella and Campylobacter jejuni in raw poultry. J Food Prot 58(3):326–344

    Google Scholar 

  6. Brynestad S, Braute L, Luber P, Bartelt E (2008) Quantitative microbiological risk assessment of campylobacteriosis cases in the German population due to consumption of chicken prepared in homes. Int J Risk Assessment and Management 8(3):194–213

    Article  Google Scholar 

  7. Cox JM, Pavic A (2010) Advances in enteropathogen control in poultry production. J Appl Microbiol 108(3):745–755

    Article  CAS  PubMed  Google Scholar 

  8. EFSA (2011) Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 9(4):141

    Google Scholar 

  9. Ellerbroek L (2012) Application of microbiological criteria in food processing - metrics. Arch Lebensmittelhyg 63(4):101–106

    Google Scholar 

  10. FSIS (2012) FSIS Notice 54-12: Performance standards for Salmonella and Campylobacter in chilled carcasses at young chicken and turkey slaughter establishments. http://www.fsis.usda.gov/OPPDE/rdad/FSISNotices/54-12.pdf. Accessed 11-2013

  11. Hansson I, Pudas N, Harbom B, Engvall EO (2010) Within-flock variations of Campylobacter loads in caeca and on carcasses from broilers. Int J Food Microbiol 141(1–2):51–55

    Article  PubMed  Google Scholar 

  12. Havelaar AH, Haagsma JA, Mangen MJ, Kemmeren JM, Verhoef LP, Vijgen SM, Wilson M, Friesema IH, Kortbeek LM, van Duynhoven YT, van Pelt W (2012) Disease burden of foodborne pathogens in the Netherlands, 2009. Int J Food Microbiol 156(3):231–238

    Article  PubMed  Google Scholar 

  13. Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75(7):1292–1302

    Article  PubMed  Google Scholar 

  14. Kim JW, Slavik MF, Walker JT, Griffis LC (1993) Attachment of Salmonella Typhimurium to skin of chicken scalded at various temperatures. J Food Prot 56:661–665

    Google Scholar 

  15. Kim JS, Kim JW, Kathariou S (2008) Differential effects of temperature on natural transformation to erythromycin and nalidixic acid resistance in Campylobacter coli. Appl Environ Microbiol 74(19):6121–6125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Klein G (2010) Interventionsmaßnahmen gegen Campylobacter in der Primärproduktion und in der Geflügelfleischgewinnung. Arch Lebensmittelhyg 3:108–111

    Google Scholar 

  17. Klein G, Reich F, Beckmann L, Atanassova V (2007) Quantification of thermophilic Campylobacter spp. in broilers during meat processing. Antonie Van Leeuwenhoek 92(3):267–273

    Article  PubMed  Google Scholar 

  18. Lehner Y (2010) Prozessoptimierungen in der Broilerschlachtung zur quantitativen Reduktion von thermophilen Campylobacter spp. auf frischem Geflügelfleisch und -produkten. Thesis Vet. med., University of Veterinary Medicine, Hannover, Germany

  19. Lienau JA, Ellerbroek L, Klein G (2007) Tracing flock-related Campylobacter clones from broiler farms through slaughter to retail products by pulsed-field gel electrophoresis. J Food Prot 70(3):536–542

    CAS  PubMed  Google Scholar 

  20. MAF (2011) NMD Campylobacter performance target (Phase 1). http://www.foodsafety.govt.nz/elibrary/industry/consultation-proposed-changes-to-campylobacter-performance-target/analysis-of-submissions.pdf. Accessed 11-2013

  21. MAF (2011) Proposed changes to the Campylobacter performance target (Phase 1). http://www.foodsafety.govt.nz/elibrary/industry/consultation-proposed-changes-to-campylobacter-performance-target/discussion-paper.pdf. Accessed 11-2013

  22. Notermans S, Kampelmacher EH (1974) Attachment of some bacterial strains to the skin of broiler chickens. Br Poult Sci 15(6):573–585

    Article  CAS  PubMed  Google Scholar 

  23. Notermans S, Kampelmacher EH (1975) Further studies on the attachment of bacteria to skin. Br Poult Sci 16(5):487–496

    Article  CAS  PubMed  Google Scholar 

  24. Osiriphun S, Tuitemwong P, Koetsinchai W, Tuitemwong K, Erickson LE (2012) Model of inactivation of Campylobacter jejuni in poultry scalding. J Food Eng 110:38–43

    Article  Google Scholar 

  25. Reich F, Atanassova V, Haunhorst E, Klein G (2008) The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter. Int J Food Microbiol 127(1–2):116–120

    Article  PubMed  Google Scholar 

  26. Romero-Barrios P, Hempen M, Messens W, Stella P, Hugas M (2013) Quantitative microbiological risk assessment (QMRA) of food-borne zoonoses at the European level. Food Control 29(2):343–349

    Article  Google Scholar 

  27. Rosenquist H, Nielsen NL, Sommer HM, Norrung B, Christensen BB (2003) Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int J Food Microbiol 83(1):87–103

    Article  PubMed  Google Scholar 

  28. Sakkaf AA, Jones G (2012) Thermal inactivation of Campylobacter jejuni in broth. J Food Prot 75(6):1029–1035

    Article  PubMed  Google Scholar 

  29. Shane SM (1992) The significance of Campylobacter jejuni infection in poultry - a review. Avian Pathol 21(2):189–213

    Article  CAS  PubMed  Google Scholar 

  30. Stopforth JD, O’Connor R, Lopes M, Kottapalli B, Hill WE, Samadpour M (2007) Validation of individual and multiple-sequential interventions for reduction of microbial populations during processing of poultry carcasses and parts. J Food Prot 70(6):1393–1401

    CAS  PubMed  Google Scholar 

  31. Van Gerwe TJ, Bouma A, Jacobs-Reitsma WF, van den Broek J, Klinkenberg D, Stegeman JA, Heesterbeek JA (2005) Quantifying transmission of Campylobacter spp. among broilers. Appl Environ Microbiol 71(10):5765–5770

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wempe JM, Genigeorgis CA, Farver TB, Yusufu HI (1983) Prevalence of Campylobacter jejuni in two California chicken processing plants. Appl Environ Microbiol 45(2):355–359

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang H, Li Y, Johnson MG (2001) Survival and death of Salmonella Typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. J Food Prot 64(6):770–776

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehner, Y., Reich, F. & Klein, G. Influence of Process Parameter on Campylobacter spp. Counts on Poultry Meat in a Slaughterhouse Environment. Curr Microbiol 69, 240–244 (2014). https://doi.org/10.1007/s00284-014-0575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0575-y

Keywords

Navigation