Skip to main content
Log in

Comparison of the Bacterial Communities in Anaerobic, Anoxic, and Oxic Chambers of a Pilot A2O Process Using Pyrosequencing Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A2O process is a sequential wastewater treatment process that uses anaerobic, anoxic, and oxic chambers for nitrogen and phosphorus removal. In this study, the bacterial communities among these chambers were compared, and the diversity of the bacteria involved in nitrogen and phosphorus removal was surveyed. A pilot-scale A2O process (50 m3 day−1) was operated for more than 6 months, and bacterial 16S rRNA gene diversity was analyzed using pyrosequencing. A total of 7,447 bacterial sequence reads were obtained from anaerobic (1,546), anoxic (2,158), and oxic (3,743) chambers. Even though there were differences in the atmospheric condition and functionality, no prominent differences could be found in the bacterial community of the three chambers of the pilot A2O process. All sequence reads, which were taxonomically analyzed using the Eztaxon-e database, were assigned into 638 approved or tentative genera. Among them, about 72.2 % of the taxa were contained in the phyla Proteobacteria and Bacteroidetes. Phosphate-accumulating bacteria, Candidatus Accumulibacter phosphatis, and two other Accumulibacter were found to constitute 3.1 % of the identified genera. Ammonia-oxidizing bacteria, Nitrosomonas oligotropha, and four other phylotypes in the same family, Nitrosomonadaceae, constituted 0.2 and 0.9 %, respectively. Nitrite-oxidizing bacteria, Nitrospira defluvii, and other three phylotypes in the same family, Nitrospiraceae, constituted 2.5 and 0.1 %, respectively. In addition, Dokdonella and a phylotype of the phylum Chloroflexi, function in nitrogen and/or phosphate removal of which have not been reported in the A2O process, constituted the first and third composition among genera at 4.3 and 3.8 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533

    PubMed  CAS  Google Scholar 

  2. Ahn J, Schroeder S, Beer M, McIlroy S, Bayly RC, May JW, Vasiliadis G, Seviour RJ (2007) Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol 73:2257–2270

    Article  PubMed  CAS  Google Scholar 

  3. Akin BS, Ugurlu A (2004) The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor. Bioresour Technol 94:1–7

    Article  PubMed  CAS  Google Scholar 

  4. Alawi M, Lipski A, Sanders T, Pfeiffer EM, Spieck E (2007) Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME J 1:256–264

    Article  PubMed  CAS  Google Scholar 

  5. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  6. Barnard JL (1975) Biological nutrient removal without the addition of chemicals. Water Res 9:485–490

    Article  CAS  Google Scholar 

  7. Baumann B, Snozzi M, Zehnder AJ, Van Der Meer JR (1996) Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178:4367–4374

    PubMed  CAS  Google Scholar 

  8. Blackall LL, Crocetti GR, Saunders AM, Bond PL (2002) A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie Van Leeuwenhoek 81:681–691

    Article  PubMed  CAS  Google Scholar 

  9. Bock E, Koops H-P, Ahlers B, Harms H (1992) Oxidation of inorganic nitrogen compounds as energy source. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 414–430

    Google Scholar 

  10. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  11. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  12. Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241

    PubMed  CAS  Google Scholar 

  13. Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D, Blackall LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182

    Article  PubMed  CAS  Google Scholar 

  14. Ding LL, Zhou QX, Wang L, Zhang QR (2011) Dynamics of bacterial community structure in a full-scale wastewater treatment plant with anoxic-oxic configuration using 16S rDNA PCR-DGGE fingerprints. Afr J Biotechnol 10:589–600

    CAS  Google Scholar 

  15. Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68:245–253

    Article  PubMed  CAS  Google Scholar 

  16. Ferguson SJ (1994) Denitrification and its control. Antonie Van Leeuwenhoek 66:89–110

    Article  PubMed  CAS  Google Scholar 

  17. Focht DD, Chang AC (1975) Nitrification and denitrification processes related to waste water treatment. Adv Appl Microbiol 19:153–186

    Article  PubMed  CAS  Google Scholar 

  18. Gich FB, Amer E, Figueras JB, Abella CA, Balaguer MD, Poch M (2000) Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int Microbiol 3:103–106

    PubMed  CAS  Google Scholar 

  19. Hanaki K, Wantawin C, Ohgaki S (1990) Nitrification at low-levels of dissolved-oxygen with and without organic loading in a suspended-growth reactor. Water Res 24:297–302

    Article  CAS  Google Scholar 

  20. Hao OJ, Chang CH (1987) Kinetics of growth and phosphate uptake in pure culture studies of Acinetobacter species. Biotechnol Bioeng 29:819–831

    Article  PubMed  CAS  Google Scholar 

  21. Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    Article  PubMed  CAS  Google Scholar 

  22. Hesselmann RP, Werlen C, Hahn D, van der Meer JR, Zehnder AJ (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454–465

    Article  PubMed  CAS  Google Scholar 

  23. Jeon CO, Lee DS, Park JM (2003) Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res 37:2195–2205

    Article  PubMed  CAS  Google Scholar 

  24. Jordan FL, Cantera JJ, Fenn ME, Stein LY (2005) Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Appl Environ Microbiol 71:197–206

    Article  PubMed  CAS  Google Scholar 

  25. Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    PubMed  CAS  Google Scholar 

  26. Kämpfer P, Erhart R, Beimfohr C, Böhringer J, Wagner M, Amann R (1996) Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol 32:101–121

    Article  PubMed  Google Scholar 

  27. Kim JM, Lee HJ, Kim SY, Song JJ, Park W, Jeon CO (2010) Analysis of the fine-scale population structure of “Candidatus Accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Appl Environ Microbiol 76:3825–3835

    Article  PubMed  CAS  Google Scholar 

  28. Kim O-S, Cho Y-J, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  29. Kong QX, Wang XW, Jin M, Shen ZQ, Li JW (2006) Development and application of a novel and effective screening method for aerobic denitrifying bacteria. FEMS Microbiol Lett 260:150–155

    Article  PubMed  CAS  Google Scholar 

  30. Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326

    Article  PubMed  CAS  Google Scholar 

  31. Lim SY, Kim S, Yeon K-M, Sang B-I, Chun J, Lee C-H (2012) Correlation between microbial community structure and biofouling in a laboratory scale membrane bioreactor with synthetic wastewater. Desalination 287:209–215

    Article  CAS  Google Scholar 

  32. Liu XC, Yang M, Zhang Y, Yang XP, Gan YP (2007) Microbial community comparison of different biological processes for treating the same sewage. World J Microbiol Biotechnol 23:135–143

    Article  Google Scholar 

  33. Lu H, Keller J, Yuan Z (2007) Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Res 41:4646–4656

    Article  PubMed  CAS  Google Scholar 

  34. Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, Le Paslier D, Daims H (2008) Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’. Environ Microbiol 10:3043–3056

    Article  PubMed  CAS  Google Scholar 

  35. Mino T, Van Loosdrecht MCM, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207

    Article  CAS  Google Scholar 

  36. Noar JD, Buckley DH (2009) Ideonella azotifigens sp. nov., an aerobic diazotroph of the Betaproteobacteria isolated from grass rhizosphere soil, and emended description of the genus Ideonella. Int J Syst Evol Microbiol 59:1941–1946

    Article  PubMed  Google Scholar 

  37. Ohtake H, Takahashi K, Tsuzuki Y, Toda K (1985) Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res 19:1587–1594

    Article  CAS  Google Scholar 

  38. Okabe S, Satoh H, Watanabe Y (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 65:3182–3191

    PubMed  CAS  Google Scholar 

  39. Ozeki S, Baba I, Takaya N, Shoun H (2001) A novel C1-using denitrifier Alcaligenes sp. STC1 and its genes for copper-containing nitrite reductase and azurin. Biosci Biotechnol Biochem 65:1206–1210

    Article  PubMed  CAS  Google Scholar 

  40. Patureau D, Godon JJ, Dabert P, Bouchez T, Bernet N, Delgenes JP, Moletta R (1998) Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int J Syst Bacteriol 48:775–782

    Article  PubMed  CAS  Google Scholar 

  41. Peng YZ, Wang XL, Li BK (2006) Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination 189:155–164

    Article  CAS  Google Scholar 

  42. Robertson LA, van Niel EW, Torremans RA, Kuenen JG (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl Environ Microbiol 54:2812–2818

    PubMed  CAS  Google Scholar 

  43. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  44. Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA, Diekmann H (1999) Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49:1045–1051

    Article  PubMed  CAS  Google Scholar 

  45. Schramm A, De Beer D, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3485

    PubMed  CAS  Google Scholar 

  46. Stackebrandt E, Verbarg S, Frühling A, Busse HJ, Tindall BJ (2009) Dissection of the genus Methylibium: reclassification of Methylibium fulvum as Rhizobacter fulvus comb. nov., Methylibium aquaticum as Piscinibacter aquaticus gen. nov., comb. nov. and Methylibium subsaxonicum as Rivibacter subsaxonicus gen. nov., comb. nov. and emended descriptions of the genera Rhizobacter and Methylibium. Int J Syst Evol Microbiol 59:2552–2560

    Article  PubMed  CAS  Google Scholar 

  47. Takaya N, Catalan-Sakairi MAB, Sakaguchi Y, Kato I, Zhou ZM, Shoun H (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69:3152–3157

    Article  PubMed  CAS  Google Scholar 

  48. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    PubMed  CAS  Google Scholar 

  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  50. Tchobanoglous G, Burton FL, Stensel HD (2002) Wastewater engineering: treatment and reuse, 4th edn. Mc Graw Hill, New York

    Google Scholar 

  51. van Niftrik LA, Fuerst JA, Sinninghe Damste JS, Kuenen JG, Jetten MS, Strous M (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233:7–13

    Article  PubMed  Google Scholar 

  52. Yang XS, Garuti G, Tilche A (1993) Denitrification with Thiobacillus denitrificans in the ANANOX process. Biotechnol Lett 15:531–536

    Article  CAS  Google Scholar 

  53. Yoon JH, Kang SJ, Oh TK (2006) Dokdonella koreensis gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:145–150

    Article  PubMed  CAS  Google Scholar 

  54. You SJ, Hsu CL, Ouyang CF (2002) Identification of the microbial diversity of wastewater nutrient removal processes using molecular biotechnology. Biotechnol Lett 24:1361–1366

    Article  CAS  Google Scholar 

  55. You SJ, Hsu CL, Chuang SH, Ouyang CF (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Res 37:2281–2290

    Article  PubMed  CAS  Google Scholar 

  56. Zilles JL, Peccia J, Kim MW, Hung CH, Noguera DR (2002) Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl Environ Microbiol 68:2763–2769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research funding from Hanyang University (HY-2011-T) and the R&D Program of MKE/KEIT [10037331, Development of Core Water Treatment Technologies based on the Intelligent BT-NT-IT Fusion Platform].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-In Sang.

Additional information

Byung-Chun Kim, Seil Kim contributed equally to this study.

The GenBank/EMBL/DDBJ accession number for the pyrosequencing data of partial 16S rRNA gene sequences of the bacteria in mixed liquor suspended solids (MLSS) from a pilot A2O reactor is SRA050633.

Tables representing the diversities of the genus and species in the biomass of anaerobic, anoxic, and oxic chambers in this A2O process are available online as supplementary material.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 43 kb)

Supplementary material 2 (XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, BC., Kim, S., Shin, T. et al. Comparison of the Bacterial Communities in Anaerobic, Anoxic, and Oxic Chambers of a Pilot A2O Process Using Pyrosequencing Analysis. Curr Microbiol 66, 555–565 (2013). https://doi.org/10.1007/s00284-013-0311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0311-z

Keywords

Navigation