Skip to main content

Advertisement

Log in

Epigenetics in the pathogenesis of RA

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Epigenetic modifications can stably alter gene expression and have been shown to be important in the maintenance of cell type-specific functions as well as in cell differentiation, e.g., in T and B cell maturation. In RA, alterations in DNA methylation, histone modifications, and microRNA expression have been found in immune as well as in stromal cells. These changes in the epigenome in RA patients influence key inflammatory and matrix-degrading pathways and are suspected to play a major role in the pathogenesis of RA. In this manuscript, we explain the basic mechanisms of epigenetics, review studies that analyzed epigenetic changes in RA, and assess their potential as therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    Article  CAS  PubMed  Google Scholar 

  2. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu L, Zhu G, Zhang C, Deng Q, Katsaros D, Mayne ST, Risch HA, Mu L, Canuto EM, Gregori G, Benedetto C, Yu H (2012) Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res Treat 136(3):875–883

    Article  CAS  PubMed  Google Scholar 

  4. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    PubMed  Google Scholar 

  5. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  6. Zhang T, Cooper S, Brockdorff N (2015a) The interplay of histone modifications—writers that read. EMBO Rep 16(11):1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4(4):481–495

    Article  CAS  PubMed  Google Scholar 

  8. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science (New York, NY) 322(5906):1387–1392

    Article  CAS  Google Scholar 

  9. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):24R–29R

    Article  CAS  PubMed  Google Scholar 

  10. Li G, Zan H, Xu Z, Casali P (2013a) Epigenetics of the antibody response. Trends Immunol 34(9):460–470

    Article  PubMed  PubMed Central  Google Scholar 

  11. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132(5):860–874

    Article  CAS  PubMed  Google Scholar 

  12. Belver L, de Yebenes VG, Ramiro AR (2010) MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33(5):713–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford WT, Schones DE, Peng W, Sun HW, Paul WE, O'Shea JJ, Zhao K (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30(1):155–167

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barski A, Cuddapah S, Kartashov AV, Liu C, Imamichi H, Yang W, Peng W, Lane HC, Zhao K (2017) Rapid recall ability of memory T cells is encoded in their epigenome. Sci Rep 7:39785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K (2005) Aberrant T cell differentiation in the absence of dicer. J Exp Med 202(2):261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, Gay S (1996) Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 149(5):1607–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lefevre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser R, Korb A, Schnaker EM, Tarner IH, Robbins PD, Evans CH, Sturz H, Steinmeyer J, Gay S, Scholmerich J, Pap T, Muller-Ladner U, Neumann E (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15(12):1414–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, Gomez-Reino JJ, Gonzalez A (2015) Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate. Arthritis research & therapy 17:233

    Article  Google Scholar 

  19. Glossop JR, Emes RD, Nixon NB, Packham JC, Fryer AA, Mattey DL, Farrell WE (2016) Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals DNA methylome changes in T and B lymphocytes. Epigenomics 8(2):209–224

    Article  CAS  PubMed  Google Scholar 

  20. Glossop JR, Emes RD, Nixon NB, Haworth KE, Packham JC, Dawes PT, Fryer AA, Mattey DL, Farrell WE (2014) Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics 9(9):1228–1237

    Article  PubMed  PubMed Central  Google Scholar 

  21. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33(11):1665–1673

    Article  CAS  PubMed  Google Scholar 

  22. Liao J, Liang G, Xie S, Zhao H, Zuo X, Li F, Chen J, Zhao M, Chan TM, Lu Q (2012) CD40L demethylation in CD4(+) T cells from women with rheumatoid arthritis. Clin Immunol 145(1):13–18

    Article  CAS  PubMed  Google Scholar 

  23. Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, Syed K, Manka SW, Brennan FM, Gregory B, Williams RO (2014) Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis & rheumatology 66(9):2344–2354

    Article  CAS  Google Scholar 

  24. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekstrom TJ, Feinberg AP (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31(2):142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693

    Article  PubMed  Google Scholar 

  26. Fu LH, Ma CL, Cong B, Li SJ, Chen HY, Zhang JG (2011) Hypomethylation of proximal CpG motif of interleukin-10 promoter regulates its expression in human rheumatoid arthritis. Acta Pharmacol Sin 32(11):1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60(12):3613–3622

    Article  CAS  PubMed  Google Scholar 

  28. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS (2013) DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 72(1):110–117

    Article  CAS  PubMed  Google Scholar 

  29. Whitaker JW, Shoemaker R, Boyle DL, Hillman J, Anderson D, Wang W, Firestein GS (2013) An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med 5(4):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de la Rica L, Urquiza JM, Gomez-Cabrero D, Islam AB, Lopez-Bigas N, Tegner J, Toes RE, Ballestar E (2013) Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun 41:6–16

    Article  PubMed  Google Scholar 

  31. Araki Y, Tsuzuki Wada T, Aizaki Y, Sato K, Yokota K, Fujimoto K, Kim YT, Oda H, Kurokawa R, Mimura T (2016) Histone methylation and STAT-3 differentially regulate interleukin-6-induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis & rheumatology 68(5):1111–1123

    CAS  Google Scholar 

  32. Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, Hemmatazad H, Neidhart M, Ospelt C, Gay RE, Michel BA, Pap T, Gay S, Jungel A (2010) Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 35(1):15–22

    Article  CAS  PubMed  Google Scholar 

  33. Wada TT, Araki Y, Sato K, Aizaki Y, Yokota K, Kim YT, Oda H, Kurokawa R, Mimura T (2014) Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem Biophys Res Commun 444(4):682–686

    Article  CAS  PubMed  Google Scholar 

  34. Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358

    Article  CAS  PubMed  Google Scholar 

  35. Lian X, Xiao R, Hu X, Kanekura T, Jiang H, Li Y, Wang Y, Yang Y, Zhao M, Lu Q (2012) DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum 64(7):2338–2345

    Article  CAS  PubMed  Google Scholar 

  36. Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, Brennan F, Gregory B, Williams RO (2015) Methotrexate restores regulatory T cell function through demethylation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis. Arthritis & rheumatology 67(5):1182–1192

    Article  CAS  Google Scholar 

  37. Gomez-Cabrero D, Almgren M, Sjoholm LK, Hensvold AH, Ringh MV, Tryggvadottir R, Kere J, Scheynius A, Acevedo N, Reinius L, Taub MA, Montano C, Aryee MJ, Feinberg JI, Feinberg AP, Tegner J, Klareskog L, Catrina AI, Ekstrom TJ (2016) High-specificity bioinformatics framework for epigenomic profiling of discordant twins reveals specific and shared markers for ACPA and ACPA-positive rheumatoid arthritis. Genome Med 8(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  38. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, Jacinto FV, Lopez-Longo FJ, Dopazo J, Forn M, Peinado MA, Carreno L, Sawalha AH, Harley JB, Siebert R, Esteller M, Miller FW, Ballestar E (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20(2):170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, Gay RE, Gay S (2000) Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 43(12):2634–2647

    Article  CAS  PubMed  Google Scholar 

  40. Brooks WH (2012) Autoimmune diseases and polyamines. Clin Rev Allergy Immunol 42(1):58–70

    Article  CAS  PubMed  Google Scholar 

  41. Furumitsu Y, Yukioka K, Kojima A, Yukioka M, Shichikawa K, Ochi T, Matsui-Yuasa I, Otani S, Nishizawa Y, Morii H (1993) Levels of urinary polyamines in patients with rheumatoid arthritis. J Rheumatol 20(10):1661–1665

    CAS  PubMed  Google Scholar 

  42. Yukioka K, Wakitani S, Yukioka M, Furumitsu Y, Shichikawa K, Ochi T, Goto H, Matsui-Yuasa I, Otani S, Nishizawa Y et al (1992) Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J Rheumatol 19(5):689–692

    CAS  PubMed  Google Scholar 

  43. Ai R, Whitaker JW, Boyle DL, Tak PP, Gerlag DM, Wang W, Firestein GS (2015) DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis & rheumatology 67(7):1978–1980

    Article  CAS  Google Scholar 

  44. Karouzakis E, Rengel Y, Jungel A, Kolling C, Gay RE, Michel BA, Tak PP, Gay S, Neidhart M, Ospelt C (2011) DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 12(8):643–652

    Article  CAS  PubMed  Google Scholar 

  45. Karouzakis E, Trenkmann M, Gay RE, Michel BA, Gay S, Neidhart M (2014) Epigenome analysis reveals TBX5 as a novel transcription factor involved in the activation of rheumatoid arthritis synovial fibroblasts. J Immunol 193(10):4945–4951

    Article  CAS  PubMed  Google Scholar 

  46. Bradfield PF, Amft N, Vernon-Wilson E, Exley AE, Parsonage G, Rainger GE, Nash GB, Thomas AM, Simmons DL, Salmon M, Buckley CD (2003) Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum 48(9):2472–2482

    Article  CAS  PubMed  Google Scholar 

  47. Pablos JL, Santiago B, Galindo M, Torres C, Brehmer MT, Blanco FJ, Garcia-Lazaro FJ (2003) Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol 170(4):2147–2152

    Article  CAS  PubMed  Google Scholar 

  48. Gillespie J, Savic S, Wong C, Hempshall A, Inman M, Emery P, Grigg R, McDermott MF (2012) Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum 64(2):418–422

    Article  CAS  PubMed  Google Scholar 

  49. Toussirot E, Abbas W, Khan KA, Tissot M, Jeudy A, Baud L, Bertolini E, Wendling D, Herbein G (2013) Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production. PLoS One 8(8):e70939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, Distler JH, Gay RE, Kolling C, Moch H, Michel BA, Gay S, Distler O, Jungel A (2007) Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 56(4):1087–1093

    Article  CAS  PubMed  Google Scholar 

  51. Kawabata T, Nishida K, Takasugi K, Ogawa H, Sada K, Kadota Y, Inagaki J, Hirohata S, Ninomiya Y, Makino H (2010) Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis. Arthritis research & therapy 12(4):R133

    Article  Google Scholar 

  52. Grabiec AM, Korchynskyi O, Tak PP, Reedquist KA (2012) Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann Rheum Dis 71(3):424–431

    Article  CAS  PubMed  Google Scholar 

  53. Klein K, Kabala PA, Grabiec AM, Gay RE, Kolling C, Lin LL, Gay S, Tak PP, Prinjha RK, Ospelt C, Reedquist KA (2016) The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis 75(2):422–429

    Article  CAS  PubMed  Google Scholar 

  54. Angiolilli C, Grabiec AM, Ferguson BS, Ospelt C, Malvar Fernandez B, van Es IE, van Baarsen LG, Gay S, McKinsey TA, Tak PP, Baeten DL, Reedquist KA (2016) Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann Rheum Dis 75(2):430–438

    Article  CAS  PubMed  Google Scholar 

  55. Angiolilli C, Kabala PA, Grabiec AM, Van Baarsen IM, Ferguson BS, Garcia S, Malvar Fernandez B, McKinsey TA, Tak PP, Fossati G, Mascagni P, Baeten DL, Reedquist KA (2017) Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann Rheum Dis 76(1):277–285

    Article  PubMed  Google Scholar 

  56. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58(4):1001–1009

    Article  PubMed  Google Scholar 

  57. Kriegsmann M, Randau TM, Gravius S, Lisenko K, Altmann C, Arens N, Kriegsmann J (2016) Expression of miR-146a, miR-155, and miR-223 in formalin-fixed paraffin-embedded synovial tissues of patients with rheumatoid arthritis and osteoarthritis. Virchows Arch 469(1):93–100

    Article  CAS  PubMed  Google Scholar 

  58. Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, McSharry C, Hueber AJ, Baxter D, Hunter J, Gay S, Liew FY, McInnes IB (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A 108(27):11193–11198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou Q, Haupt S, Kreuzer JT, Hammitzsch A, Proft F, Neumann C, Leipe J, Witt M, Schulze-Koops H, Skapenko A (2015) Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis 74(6):1265–1274

    Article  CAS  PubMed  Google Scholar 

  60. Niimoto T, Nakasa T, Ishikawa M, Okuhara A, Izumi B, Deie M, Suzuki O, Adachi N, Ochi M (2010) MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord 11:209

    Article  PubMed  PubMed Central  Google Scholar 

  61. Alivernini S, Kurowska-Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, Petricca L, Mangoni A, Fedele AL, Di Mario C, Gigante MR, Gremese E, McInnes IB, Ferraccioli G (2016) MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun 7:12970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elmesmari A, Fraser AR, Wood C, Gilchrist D, Vaughan D, Stewart L, McSharry C, McInnes IB, Kurowska-Stolarska M (2016) MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in rheumatoid arthritis. Rheumatology (Oxford) 55(11):2056–2065

    Article  Google Scholar 

  63. Bluml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, Koenders MI, van den Berg WB, Smolen J, Redlich K (2011) Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 63(5):1281–1288

    Article  PubMed  Google Scholar 

  64. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33):12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X (2009) MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183(3):2150–2158

    Article  CAS  PubMed  Google Scholar 

  66. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis research & therapy 10(4):R101

    Article  Google Scholar 

  67. Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, Boots AM, Brouwer E, Kroesen BJ (2014) Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun 15(2):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M (2011) The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 63(6):1582–1590

    Article  CAS  PubMed  Google Scholar 

  69. Nakamachi Y, Ohnuma K, Uto K, Noguchi Y, Saegusa J, Kawano S (2016) MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann Rheum Dis 75(3):601–608

    Article  CAS  PubMed  Google Scholar 

  70. Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T, Saura R, Kurosaka M, Kumagai S (2009) MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 60(5):1294–1304

    Article  PubMed  Google Scholar 

  71. Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, Nakamura T (2010) Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis research & therapy 12(3):R86

    Article  Google Scholar 

  72. Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM, Shiau AL, Wu CL (2012) Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64(10):3240–3245

    Article  CAS  PubMed  Google Scholar 

  73. Ogando J, Tardaguila M, Diaz-Alderete A, Usategui A, Miranda-Ramos V, Martinez-Herrera DJ, de la Fuente L, Garcia-Leon MJ, Moreno MC, Escudero S, Canete JD, Toribio ML, Cases I, Pascual-Montano A, Pablos JL, Manes S (2016) Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients. Sci Rep 6:20223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, Colombo T, Citarella F, Barnaba V, Minisola G, Galeazzi M, Macino G (2010) miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71(2):206–211

    Article  CAS  PubMed  Google Scholar 

  75. Lu MC, Yu CL, Chen HC, Yu HC, Huang HB, Lai NS (2014) Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production. Clin Exp Immunol 177(3):641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang H, Peng W, Ouyang X, Li W, Dai Y (2012) Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res 160(3):198–206

    Article  CAS  PubMed  Google Scholar 

  77. Shibuya H, Nakasa T, Adachi N, Nagata Y, Ishikawa M, Deie M, Suzuki O, Ochi M (2013) Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23(4):674–685

    Article  CAS  PubMed  Google Scholar 

  78. Churov AV, Oleinik EK, Knip M (2015) MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun Rev 14(11):1029–1037

    Article  CAS  PubMed  Google Scholar 

  79. Vrijens K, Bollati V, Nawrot TS (2015) MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect 123(5):399–411

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Khalifa O, Pers YM, Ferreira R, Senechal A, Jorgensen C, Apparailly F, Duroux-Richard I (2016) X-Linked miRNAs associated with gender differences in rheumatoid arthritis. Int J Mol Sci 17(11):1852

  81. Klareskog L, Gregersen PK, Huizinga TW (2010) Prevention of autoimmune rheumatic disease: state of the art and future perspectives. Ann Rheum Dis 69(12):2062–2066

    Article  CAS  PubMed  Google Scholar 

  82. Hruskova V, Jandova R, Vernerova L, Mann H, Pecha O, Prajzlerova K, Pavelka K, Vencovsky J, Filkova M, Senolt L (2016) MicroRNA-125b: association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res Ther 18(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  83. Filkova M, Aradi B, Senolt L, Ospelt C, Vettori S, Mann H, Filer A, Raza K, Buckley CD, Snow M, Vencovsky J, Pavelka K, Michel BA, Gay RE, Gay S, Jungel A (2014) Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis 73(10):1898–1904

    Article  CAS  PubMed  Google Scholar 

  84. Duroux-Richard I, Pers YM, Fabre S, Ammari M, Baeten D, Cartron G, Touitou I, Jorgensen C, Apparailly F (2014) Circulating miRNA-125b is a potential biomarker predicting response to rituximab in rheumatoid arthritis. Mediat Inflamm 2014:342524

    Article  Google Scholar 

  85. Castro-Villegas C, Perez-Sanchez C, Escudero A, Filipescu I, Verdu M, Ruiz-Limon P, Aguirre MA, Jimenez-Gomez Y, Font P, Rodriguez-Ariza A, Peinado JR, Collantes-Estevez E, Gonzalez-Conejero R, Martinez C, Barbarroja N, Lopez-Pedrera C (2015) Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFalpha. Arthritis research & therapy 17:49

    Article  Google Scholar 

  86. Krintel SB, Dehlendorff C, Hetland ML, Horslev-Petersen K, Andersen KK, Junker P, Podenphant J, Ellingsen T, Ahlquist P, Lindegaard HM, Linauskas A, Schlemmer A, Dam MY, Hansen I, Horn HC, Jorgensen A, Raun J, Ammitzboll CG, Ostergaard M, Stengaard-Pedersen K, Johansen JS (2016) Prediction of treatment response to adalimumab: a double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. Pharmacogenomics J 16(2):141–146

    Article  CAS  PubMed  Google Scholar 

  87. Cuppen BV, Rossato M, Fritsch-Stork RD, Concepcion AN, Schenk Y, Bijlsma JW, Radstake TR, Lafeber FP, all S.R.U. investigators (2016) Can baseline serum microRNAs predict response to TNF-alpha inhibitors in rheumatoid arthritis? Arthritis Res Ther 18:189

    Article  PubMed  PubMed Central  Google Scholar 

  88. Joosten LA, Leoni F, Meghji S, Mascagni P (2011) Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol Med 17(5–6):391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li M, Liu X, Sun X, Wang Z, Guo W, Hu F, Yao H, Cao X, Jin J, Wang PG, Shen J, Li Z (2013b) Therapeutic effects of NK-HDAC-1, a novel histone deacetylase inhibitor, on collagen-induced arthritis through the induction of apoptosis of fibroblast-like synoviocytes. Inflammation 36(4):888–896

    Article  CAS  PubMed  Google Scholar 

  90. Hsieh IN, Liou JP, Lee HY, Lai MJ, Li YH, Yang CR (2014) Preclinical anti-arthritic study and pharmacokinetic properties of a potent histone deacetylase inhibitor MPT0G009. Cell Death Dis 5:e1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vojinovic J, Damjanov N, D'Urzo C, Furlan A, Susic G, Pasic S, Iagaru N, Stefan M, Dinarello CA (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63(5):1452–1458

    Article  CAS  PubMed  Google Scholar 

  92. Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL (2010) Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel) 3(9):2751–2767

    Article  CAS  Google Scholar 

  93. Lee J, Hong EC, Jeong H, Hwang JW, Kim H, Bae EK, Ahn JK, Choi YL, Han J, Cha HS, Koh EM (2015) A novel histone deacetylase 6-selective inhibitor suppresses synovial inflammation and joint destruction in a collagen antibody-induced arthritis mouse model. Int J Rheum Dis 18(5):514–523

    Article  CAS  PubMed  Google Scholar 

  94. Mele DA, Salmeron A, Ghosh S, Huang HR, Bryant BM, Lora JM (2013) BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med 210(11):2181–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang QG, Qian J, Zhu YC (2015b) Targeting bromodomain-containing protein 4 (BRD4) benefits rheumatoid arthritis. Immunol Lett 166(2):103–108

    Article  CAS  PubMed  Google Scholar 

  96. Xiao Y, Liang L, Huang M, Qiu Q, Zeng S, Shi M, Zou Y, Ye Y, Yang X, Xu H (2016) Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IkappaB kinase-dependent NF-kappaB activation in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford, England) 55(1):173–184

    Article  Google Scholar 

  97. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182(1):259–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, Wang J, Zhao M, Lu Q, Xiao R (2014) Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenetics 6(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Ospelt.

Additional information

This article is a contribution to the special issue on Immunopathology of Rheumatoid Arthritis -- Guest Editors: Cem Gabay and Paul Hasler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ospelt, C., Gay, S. & Klein, K. Epigenetics in the pathogenesis of RA. Semin Immunopathol 39, 409–419 (2017). https://doi.org/10.1007/s00281-017-0621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-017-0621-5

Keywords

Navigation