Skip to main content

Advertisement

Log in

Evaluation of artemisinins for the treatment of acute myeloid leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Investigate antileukemic activity of artemisinins, artesunate (ART), and dihydroartemisinin (DHA), in combination with cytarabine, a key component of acute myeloid leukemia (AML) chemotherapy using in vitro and in vivo models.

Methods

Using ten human AML cell lines, we conducted a high-throughput screen to identify antimalarial agents with antileukemic activity. We evaluated effects of ART and DHA on cell viability, cytotoxicity, apoptosis, lysosomal integrity, and combination effects with cytarabine in cell lines and primary patient blasts. In vivo pharmacokinetic studies and efficacy of single-agent ART or combination with cytarabine were evaluated in three xenograft models.

Results

ART and DHA had the most potent activity in a panel of AML cell lines, with selectivity toward samples harboring MLL rearrangements and FLT3-ITD mutations. Combination of ART or DHA was synergistic with cytarabine. Single-dose ART (120 mg/kg) produced human equivalent exposures, but multiple dose daily administration required for in vivo efficacy was not tolerated. Combination treatment produced initial regression, but did not prolong survival in vivo.

Conclusions

The pharmacology of artemisinins is problematic and should be considered in designing AML treatment strategies with currently available agents. Artemisinins with improved pharmacokinetic properties may offer therapeutic benefit in combination with conventional therapeutic strategies in AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ribeiro RC (2014) Advances in treatment of de-novo pediatric acute myeloid leukemia. Curr Opin Oncol 26(6):656–662. doi:10.1097/CCO.0000000000000136

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara F, Schiffer CA (2013) Acute myeloid leukaemia in adults. Lancet 381(9865):484–495. doi:10.1016/S0140-6736(12)61727-9

    Article  PubMed  Google Scholar 

  3. Krishna S, Uhlemann AC, Haynes RK (2004) Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updates 7(4–5):233–244. doi:10.1016/j.drup.2004.07.001

    Article  CAS  Google Scholar 

  4. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18(4):767–773

    CAS  PubMed  Google Scholar 

  5. Fox JM, Moynihan JR, Posner GH, Brown P, Civin CI, Chen X (2014) Repurposing Artemisinins for treatment of acute leukemias [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research, 5–9 Apr 2014; San Diego, CA Philadelphia (PA): AACR; Cancer Res 2014; 74(19 Suppl):Abstract nr 818

  6. Steinbruck L, Pereira G, Efferth T (2010) Effects of artesunate on cytokinesis and G(2)/M cell cycle progression of tumour cells and budding yeast. Cancer Genomics Proteomics 7(6):337–346

    PubMed  Google Scholar 

  7. Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS ONE 2(8):e693. doi:10.1371/journal.pone.0000693

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lu JJ, Meng LH, Cai YJ, Chen Q, Tong LJ, Lin LP, Ding J (2008) Dihydroartemisinin induces apoptosis in HL-60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol Ther 7(7):1017–1023

    Article  CAS  PubMed  Google Scholar 

  9. Sukhai MA, Prabha S, Hurren R, Rutledge AC, Lee AY, Sriskanthadevan S, Sun H, Wang X, Skrtic M, Seneviratne A, Cusimano M, Jhas B, Gronda M, MacLean N, Cho EE, Spagnuolo PA, Sharmeen S, Gebbia M, Urbanus M, Eppert K, Dissanayake D, Jonet A, Dassonville-Klimpt A, Li X, Datti A, Ohashi PS, Wrana J, Rogers I, Sonnet P, Ellis WY, Corey SJ, Eaves C, Minden MD, Wang JC, Dick JE, Nislow C, Giaever G, Schimmer AD (2013) Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J Clin Invest 123(1):315–328. doi:10.1172/JCI64180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eriksson A, Osterroos A, Hassan S, Gullbo J, Rickardson L, Jarvius M, Nygren P, Fryknas M, Hoglund M, Larsson R (2015) Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J 5:e307. doi:10.1038/bcj.2015.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zimmerman EI, Turner DC, Buaboonnam J, Hu S, Orwick S, Roberts MS, Janke LJ, Ramachandran A, Stewart CF, Inaba H, Baker SD (2013) Crenolanib is active against models of drug-resistant FLT3-ITD-positive acute myeloid leukemia. Blood 122(22):3607–3615. doi:10.1182/blood-2013-07-513044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atkinson JM, Shelat AA, Carcaboso AM, Kranenburg TA, Arnold LA, Boulos N, Wright K, Johnson RA, Poppleton H, Mohankumar KM, Feau C, Phoenix T, Gibson P, Zhu L, Tong Y, Eden C, Ellison DW, Priebe W, Koul D, Yung WK, Gajjar A, Stewart CF, Guy RK, Gilbertson RJ (2011) An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20(3):384–399. doi:10.1016/j.ccr.2011.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  14. He G, Qi H, Wang M, Yang J, Wen F, Wang W, Qiao C, Zhang H (2013) LC–MS/MS method for the simultaneous quantitation of three active components derived from a novel prodrug against schistosome infection. J Pharm Biomed Anal 83:186–193. doi:10.1016/j.jpba.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Hu S, Niu H, Inaba H, Orwick S, Rose C, Panetta JC, Yang S, Pounds S, Fan Y, Calabrese C, Rehg JE, Campana D, Rubnitz JE, Baker SD (2011) Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. J Natl Cancer Inst 103(11):893–905. doi:10.1093/jnci/djr107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang S, Chen H, Gerhard GS (2010) Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem Biol Interact 186(1):30–35. doi:10.1016/j.cbi.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Hu W, Zhang JL, Wu XH, Zhou HJ (2012) Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2:103–112. doi:10.1016/j.fob.2012.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G, Shurtleff SA, Pounds S, Cheng C, Ma J, Ribeiro RC, Rubnitz JE, Girtman K, Williams WK, Raimondi SC, Liang DC, Shih LY, Pui CH, Downing JR (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104(12):3679–3687. doi:10.1182/blood-2004-03-1154

    Article  CAS  PubMed  Google Scholar 

  19. Saunders D, Khemawoot P, Vanachayangkul P, Siripokasupkul R, Bethell D, Tyner S, Se Y, Rutvisuttinunt W, Sriwichai S, Chanthap L, Lin J, Timmermans A, Socheat D, Ringwald P, Noedl H, Smith B, Fukuda M, Teja-Isavadharm P (2012) Pharmacokinetics and pharmacodynamics of oral artesunate monotherapy in patients with uncomplicated Plasmodium falciparum malaria in western Cambodia. Antimicrob Agents Chemother 56(11):5484–5493. doi:10.1128/AAC.00044-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao N, Budhraja A, Cheng S, Liu EH, Huang C, Chen J, Yang Z, Chen D, Zhang Z, Shi X (2011) Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo. Apoptosis Int J Program Cell Death 16(5):511–523. doi:10.1007/s10495-011-0580-6

    Article  CAS  Google Scholar 

  21. Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, Efferth T, Eils R, Brady NR (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem 286(8):6587–6601. doi:10.1074/jbc.M110.210047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP, Sivina M, Wierda WG, Estrov Z, Keating MJ, Shehata M, Jager U, Gandhi V, Kay NE, Plunkett W, Burger JA (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114(20):4441–4450. doi:10.1182/blood-2009-07-233718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei Z, Chen N, Guo H, Wang X, Xu F, Ren Q, Lu S, Liu B, Zhang L, Zhao H (2009) Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J Exp Clin Cancer Res 28:141. doi:10.1186/1756-9966-28-141

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hendriksen IC, Mtove G, Kent A, Gesase S, Reyburn H, Lemnge MM, Lindegardh N, Day NP, von Seidlein L, White NJ, Dondorp AM, Tarning J (2013) Population pharmacokinetics of intramuscular artesunate in African children with severe malaria: implications for a practical dosing regimen. Clin Pharmacol Ther 93(5):443–450. doi:10.1038/clpt.2013.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olliaro PL, Taylor WR (2003) Antimalarial compounds: from bench to bedside. J Exp Biol 206(Pt 21):3753–3759

    Article  CAS  PubMed  Google Scholar 

  26. Paik IH, Xie S, Shapiro TA, Labonte T, Narducci Sarjeant AA, Baege AC, Posner GH (2006) Second generation, orally active, antimalarial, artemisinin-derived trioxane dimers with high stability, efficacy, and anticancer activity. J Med Chem 49(9):2731–2734. doi:10.1021/jm058288w

    Article  CAS  PubMed  Google Scholar 

  27. Singh NP, Lai HC, Park JS, Gerhardt TE, Kim BJ, Wang S, Sasaki T (2011) Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res 31(12):4111–4114

    CAS  PubMed  Google Scholar 

  28. Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T (2009) Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res 29(10):3807–3810

    CAS  PubMed  Google Scholar 

  29. Nakase I, Gallis B, Takatani-Nakase T, Oh S, Lacoste E, Singh NP, Goodlett DR, Tanaka S, Futaki S, Lai H, Sasaki T (2009) Transferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett 274(2):290–298. doi:10.1016/j.canlet.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  30. Nakase I, Lai H, Singh NP, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354(1–2):28–33. doi:10.1016/j.ijpharm.2007.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the American Lebanese Syrian Associated Charities (ALSAC), National Institutes of Health Cancer Center Support Grant P30 CA021765, R01 CA138744 (SDB), and F32 CA180513 (CDD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharyn D. Baker.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drenberg, C.D., Buaboonnam, J., Orwick, S.J. et al. Evaluation of artemisinins for the treatment of acute myeloid leukemia. Cancer Chemother Pharmacol 77, 1231–1243 (2016). https://doi.org/10.1007/s00280-016-3038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3038-2

Keywords

Navigation