Skip to main content

Advertisement

Log in

In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Artemisinins are now established drugs for treatment of malaria. These agents have been shown to possess impressive anti-cancer properties. We have investigated the role of artemisone (ATM), a novel derivative of artemisinin (ART) in a cancer setting both alone and in combination with established chemotherapeutic agents.

Methods

The anti-proliferative effects of ART and ATM were tested on a panel of human cancer cells in vitro using the methylthiazoletetrazolium assay, and the effect on cell cycling established by flow cytometry. Immunoblot analyses were performed to determine effects at the molecular level. Finally, ART and ATM were combined with the common anti-cancer agents oxaliplatin, gemcitabine and thalidomide.

Results

ART and ATM caused dose dependent decreases in cell number. ATM was consistently superior to ART, with IC50 s significantly lower in the former. Neither drug caused significant changes to the cell viability (%viable cells >95%), but arrested cell cycling. Blockade was either exclusively at the level of G1, or at all phases of the cell cycle, and associated with reductions in cyclin D1, CDK4 and pRb. Combination studies showed the anti-proliferative effect of ATM was often enhanced by addition of the other drugs, whilst ART exhibited antagonistic properties.

Conclusions

ART and ATM are active in cancer cell lines, with ATM displaying the greater anti-proliferative effect when used alone. ATM also enhances the effects of the above drugs, with ART being less likely to improve activities. Taken together, ATM should be thought of as the ART-derived compound next in line for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055

    Article  CAS  PubMed  Google Scholar 

  2. Golenser J, Waknine JH, Krugliak M, Hunt NH, Grau GE (2006) Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 36:1427–1441

    Article  CAS  PubMed  Google Scholar 

  3. Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29:520–527

    Article  CAS  PubMed  Google Scholar 

  4. Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, Chan HW, Cheung MK, Lam WL, Wong HN, Croft SL, Vivas L, Rattray L, Stewart L, Peters W, Robinson BL, Edstein MD, Kotecka B, Kyle DE, Beckermann B, Gerisch M, Radtke M, Schmuck G, Steinke W, Wollborn U, Schmeer K, Romer A (2006) Artemisone—a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed Engl 45:2082–2088

    Article  CAS  PubMed  Google Scholar 

  5. Li GQ, Arnold K, Guo XB, Jian HX, Fu LC (1984) Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in patients with falciparum malaria. Lancet 2:1360–1361

    Article  CAS  PubMed  Google Scholar 

  6. Li GQ, Guo XB, Fu LC, Jian HX, Wang XH (1994) Clinical trials of artemisinin and its derivatives in the treatment of malaria in China. Trans R Soc Trop Med Hyg 88(Suppl 1):S5–S6

    Article  PubMed  Google Scholar 

  7. WHO Guidelines for the treatment of malaria (2006)

  8. Vivas L, Rattray L, Stewart LB, Robinson BL, Fugmann B, Haynes RK, Peters W, Croft SL (2007) Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. J Antimicrob Chemother 59:658–665

    Article  CAS  PubMed  Google Scholar 

  9. Ramharter M, Burkhardt D, Nemeth J, Adegnika AA, Kremsner PG (2006) In vitro activity of artemisone compared with artesunate against Plasmodium falciparum. Am J Trop Med Hyg 75:637–639

    CAS  PubMed  Google Scholar 

  10. Nagelschmitz J, Voith B, Wensing G, Roemer A, Fugmann B, Haynes RK, Kotecka BM, Rieckmann KH, Edstein MD (2008) First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob Agents Chemother 52:3085–3091

    Article  CAS  PubMed  Google Scholar 

  11. Woerdenbag HJ, Moskal TA, Pras N, Malingre TM, el-Feraly FS, Kampinga HH, Konings AW (1993) Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod 56:849–856

    Article  CAS  PubMed  Google Scholar 

  12. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767–773

    CAS  PubMed  Google Scholar 

  13. Chen HH, Zhou HJ, Fang X (2003) Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol Res 48:231–236

    Article  CAS  PubMed  Google Scholar 

  14. Nakase I, Lai H, Singh NP, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354:28–33

    Article  CAS  PubMed  Google Scholar 

  15. Li LN, Zhang HD, Yuan SJ, Tian ZY, Wang L, Sun ZX (2007) Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/beta-catenin pathway. Int J Cancer 121:1360–1365

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Sun B, Pan S, Jiang H, Sun X (2009) Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs 20:131–140

    Article  PubMed  Google Scholar 

  17. Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A, Schuler G (2005) Artesunate in the treatment of metastatic uveal melanoma—first experiences. Oncol Rep 14:1599–1603

    CAS  PubMed  Google Scholar 

  18. Singh NP, Panwar VK (2006) Case report of a pituitary macroadenoma treated with artemether. Integr Cancer Ther 5:391–394

    Article  PubMed  Google Scholar 

  19. Zhang ZY, Yu SQ, Miao LY, Huang XY, Zhang XP, Zhu YP, Xia XH, Li DQ (2008) Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao 6:134–138

    Article  CAS  PubMed  Google Scholar 

  20. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530

    Article  CAS  PubMed  Google Scholar 

  21. Singh NP, Lai HC (2004) Artemisinin induces apoptosis in human cancer cells. Anticancer Res 24:2277–2280

    CAS  PubMed  Google Scholar 

  22. Zhou HJ, Wang Z, Li A (2008) Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anticancer Drugs 19:247–255

    Article  PubMed  Google Scholar 

  23. Chen HH, Zhou HJ, Wang WQ, Wu GD (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 53:423–432

    Article  CAS  PubMed  Google Scholar 

  24. Wartenberg M, Wolf S, Budde P, Grunheck F, Acker H, Hescheler J, Wartenberg G, Sauer H (2003) The antimalaria agent artemisinin exerts antiangiogenic effects in mouse embryonic stem cell-derived embryoid bodies. Lab Invest 83:1647–1655

    Article  CAS  PubMed  Google Scholar 

  25. Buommino E, Baroni A, Canozo N, Petrazzuolo M, Nicoletti R, Vozza A, Tufano MA (2009) Artemisinin reduces human melanoma cell migration by down-regulating alpha V beta 3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 27:412–418

    Article  CAS  PubMed  Google Scholar 

  26. Ribeiro IR, Olliaro P (1998) Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials. Med Trop (Mars.) 58:50–53

    CAS  Google Scholar 

  27. Gordi T, Lepist EI (2004) Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett 147:99–107

    Article  CAS  PubMed  Google Scholar 

  28. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N (2004) International Artemisinin Study Group. Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363(9402):9–17

    Article  CAS  PubMed  Google Scholar 

  29. Liu WM (2008) Enhancing the cytotoxic activity of novel targeted therapies—is there a role for a combinatorial approach? Curr Clin Pharmacol 3(2):108–117 (Review)

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  31. Liu WM, Scott KA, Shamash J, Joel S, Powles TB (2008) Enhancing the in vitro cytotoxic activity of Delta9-tetrahydrocannabinol in leukemic cells through a combinatorial approach. Leuk Lymphoma 49(9):1800–1809

    Article  CAS  PubMed  Google Scholar 

  32. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  33. Batty KT, Davis TM, Thu LT, Binh TQ, Anh TK, Ilett KF (1996) Selective high-performance liquid chromatographic determination of artesunate and alpha- and beta-dihydroartemisinin in patients with falciparum malaria. J Chromatogr Biomed Appl 677:345–350

    Article  Google Scholar 

  34. Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch ME, Volm M, Tew KD, Ross DD, Funk JO (2003) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol 64:382–394

    Article  CAS  PubMed  Google Scholar 

  35. Beekman AC, Barentsen AR, Woerdenbag HJ, Van UW, Pras N, Konings AW, el-Feraly FS, Galal AM, Wikstrom HV (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–330

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Shan F, Wu JM, Wu GS, Ding J, Xiao D, Yang WY, Atassi G, Leonce S, Caignard DH, Renard P (2001) Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle. Bioorg Med Chem Lett 11:5–8

    Article  PubMed  Google Scholar 

  37. Willoughby JA Sr, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284:2203–2213

    Article  CAS  PubMed  Google Scholar 

  38. Wu J, Feng Y, Xie D, Li X, Xiao W, Tao D, Qin J, Hu J, Gardner K, Judge SI, Li QQ, Gong J (2006) Unscheduled CDK1 activity in G1 phase of the cell cycle triggers apoptosis in X-irradiated lymphocytic leukemia cells. Cell Mol Life Sci 63(21):2538–2545

    Article  CAS  PubMed  Google Scholar 

  39. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15(3):1705–1721

    Article  PubMed  Google Scholar 

  40. Singh NP, Lai HC (2005) Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells. Anticancer Res 25:4325–4331

    CAS  PubMed  Google Scholar 

  41. Chen T, Li M, Zhang R, Wang H (2009) Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med 13:1358–1370

    Article  CAS  PubMed  Google Scholar 

  42. Zhou HJ, Zhang JL, Li A, Wang Z, Lou XE (2009) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitro. Cancer Chemother Pharmacol

  43. Hata T, Yamamoto H, Ngan CY, Koi M, Takagi A, Damdinsuren B, Yasui M, Fujie Y, Matsuzaki T, Hemmi H, Xu X, Kitani K, Seki Y, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2005) Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol Cancer Ther 4:1585–1594

    Article  CAS  PubMed  Google Scholar 

  44. Tolis C, Peters GJ, Ferreira CG, Pinedo HM, Giaccone G (1999) Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer 35:796–807

    Article  CAS  PubMed  Google Scholar 

  45. Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, Brady HA, Gandhi AK, Schafer PH, Muller GW, Worland PJ, Chan KW, Verhelle D (2009) Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res 69:7347–7356

    Article  CAS  PubMed  Google Scholar 

  46. Riganti C, Doublier S, Viarisio D, Miraglia E, Pescarmona G, Ghigo D, Bosia A (2009) Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br J Pharmacol 156:1054–1066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. John Copier for helpful discussions and critical reading of the manuscript. The authors would also like to thank Celgene Corps. for supplying thalidomide. Work at the Hong Kong University of Science and Technology was carried out in the Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis with financial support from the Government of the HKSAR University Grants Committee Areas of Excellence Fund, Projects No. AoE P/10-01/01-02-I, AOE/P-10/01-2-II and the University Grants Council Grants No. HKUST 6493/06 M and 600507. Professor Krishna is funded by the European Commission projects ANTIMAL (Grant No. 018834) and MALSIG (Grant No. 223044). This work was funded by the cancer vaccine institute (http://www.cancervaccine.org.uk).

Conflict of interest statement

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew M. Gravett or Wai M. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravett, A.M., Liu, W.M., Krishna, S. et al. In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 67, 569–577 (2011). https://doi.org/10.1007/s00280-010-1355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1355-4

Keywords

Navigation