Skip to main content
Log in

The JAK2 46/1 haplotype does not predispose to CALR-mutated myeloproliferative neoplasms

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Somatic mutations in the CALR gene were recently discovered in a substantial proportion of Philadelphia-negative chronic myeloproliferative neoplasm (cMPN) patients lacking JAK2 and MPL mutations. Somatically acquired defects are not the only pathogenic mechanism involved in these disorders. Since germline JAK2 46/1 haplotype predisposes to cMPN-associated mutations, including JAK2V617F and MPLW515K7L, we evaluated whether the 46/1 haplotype also confers susceptibility to CALR-mutated cMPN, both in sporadic and familial cases. The single-nucleotide polymorphism rs10974944, which tags 46/1, was investigated in 155 sporadic MPN patients and 270 unrelated controls, as well as in 11 familial cMPN cases and 36 unaffected relative controls. As described elsewhere, the 46/1 haplotype was overrepresented, both in sporadic and familial cMPN. In sporadic cMPN, the JAK2 46/1 haplotype was closely associated with JAK2V617F (p = 0.0003) but not with JAK2-nonmutated cases. Analysis of CALR-mutated sporadic cMPN (n = 22) showed no association between CALR mutations and 46/1 haplotype (p = 0.87). Regarding the familial cMPN, the prevalence of carriers of the G allele was higher in familial (81.8 %) than in sporadic (62 %) cMPN, but it did not differ significantly (p = 0.3). Although we described a family with carriers of both JAK2V617F and CALR mutations, due to the low number of CALR-mutated familial cases, we could not determinate whether the JAK2 46/1 haplotype predisposes or does not to CALR-mutated familial cMPN. We conclude, for the first time, that the 46/1 haplotype, unlike JAK2V617F and MPLW515K7L, is not associated with CALR-mutated cMPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O’Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, Du MQ, Greaves M, Bowen D, Huntly BJ, Harrison CN, Cross NC, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 369(25):2391–2405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, Them NC, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer GI, Bagienski K, Milanesi C, Casetti IC, Sant’Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schonegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369(25):2379–2390

    Article  CAS  PubMed  Google Scholar 

  3. Rumi E (2008) Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol 26(3):131–138

    Article  CAS  PubMed  Google Scholar 

  4. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, Delhommeau F, Casadevall N, Vainchenker W, Thomas G, Najman A (2006) Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 108(1):346–352

    Article  CAS  PubMed  Google Scholar 

  5. Maffioli M, Genoni A, Caramazza D, Mora B, Bussini A, Merli M, Giorgino T, Casalone R, Passamonti F (2014) Looking for CALR mutations in familial myeloproliferative neoplasms. Leukemia 28(6):1357–1360

    Article  CAS  PubMed  Google Scholar 

  6. Lundberg P, Nienhold R, Ambrosetti A, Cervantes F, Perez-Encinas MM, Skoda RC (2014) Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms. Blood 123(17):2744–2745

    Article  CAS  PubMed  Google Scholar 

  7. Rumi E, Harutyunyan AS, Pietra D, Milosevic JD, Casetti IC, Bellini M, Them NC, Cavalloni C, Ferretti VV, Milanesi C, Berg T, Sant’antonio E, Boveri E, Pascutto C, Astori C, Kralovics R, Cazzola M (2014) CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood 123(15):2416–2419

    Article  CAS  PubMed  Google Scholar 

  8. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, Bass A, Marubayashi S, Heguy A, Garcia-Manero G, Kantarjian H, Offit K, Stone RM, Gilliland DG, Klein RJ, Levine RL (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41(4):455–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, Cario H, Pahl HL, Collins A, Reiter A, Grand F, Cross NC (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41(4):446–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, Gisslinger H, Kralovics R (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41(4):450–454

    Article  CAS  PubMed  Google Scholar 

  11. Jones AV, Campbell PJ, Beer PA, Schnittger S, Vannucchi AM, Zoi K, Percy MJ, McMullin MF, Scott LM, Tapper W, Silver RT, Oscier D, Harrison CN, Grallert H, Kisialiou A, Strike P, Chase AJ, Green AR, Cross NC (2010) The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood 115(22):4517–4523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pietra D, Casetti I, Da Via MC, Elena C, Milanesi C, Rumi E (2012) JAK2 GGCC haplotype in MPL mutated myeloproliferative neoplasms. Am J Hematol 87(7):746–747

    Article  CAS  PubMed  Google Scholar 

  13. Hermouet S, Vilaine M (2011) The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica 96(11):1575–1579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vardiman JW BR, Harris NL (2001) WHO histological classification of chronic myeloproliferative diseases. In: Jaffe ES HN, Stein H, Vardiman JW (eds) World Health Organization classification of tumors: tumours of the haematopoietic and lymphoid tissues. International Agency for Research on Cancer (IARC) Press, Lyon, pp 17–44

    Google Scholar 

  15. Tefferi A, Vardiman JW (2008) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22(1):14–22

    Article  CAS  PubMed  Google Scholar 

  16. Murugesan G, Aboudola S, Szpurka H, Verbic MA, Maciejewski JP, Tubbs RR, Hsi ED (2006) Identification of the JAK2 V617F mutation in chronic myeloproliferative disorders using FRET probes and melting curve analysis. Am J Clin Pathol 125(4):625–633

    Article  CAS  PubMed  Google Scholar 

  17. Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929

    Article  CAS  PubMed  Google Scholar 

  18. Chen MH, Yang Q (2010) GWAF: an R package for genome-wide association analyses with family data. Bioinformatics 26(4):580–581

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pardanani A, Lasho TL, Finke CM, Gangat N, Wolanskyj AP, Hanson CA, Tefferi A (2010) The JAK2 46/1 haplotype confers susceptibility to essential thrombocythemia regardless of JAK2V617F mutational status-clinical correlates in a study of 226 consecutive patients. Leukemia 24(1):110–114

    Article  CAS  PubMed  Google Scholar 

  20. Tefferi A, Lasho TL, Patnaik MM, Finke CM, Hussein K, Hogan WJ, Elliott MA, Litzow MR, Hanson CA, Pardanani A (2010) JAK2 germline genetic variation affects disease susceptibility in primary myelofibrosis regardless of V617F mutational status: nullizygosity for the JAK2 46/1 haplotype is associated with inferior survival. Leukemia 24(1):105–109

    Article  CAS  PubMed  Google Scholar 

  21. Andrikovics H, Nahajevszky S, Koszarska M, Meggyesi N, Bors A, Halm G, Lueff S, Lovas N, Matrai Z, Csomor J, Rasonyi R, Egyed M, Varkonyi J, Mikala G, Sipos A, Kozma A, Adam E, Fekete S, Masszi T, Tordai A (2010) JAK2 46/1 haplotype analysis in myeloproliferative neoplasms and acute myeloid leukemia. Leukemia 24(10):1809–1813

    Article  CAS  PubMed  Google Scholar 

  22. Olcaydu D, Rumi E, Harutyunyan A, Passamonti F, Pietra D, Pascutto C, Berg T, Jager R, Hammond E, Cazzola M, Kralovics R (2011) The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica 96(3):367–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Trifa AP, Cucuianu A, Petrov L, Urian L, Militaru MS, Dima D, Pop IV, Popp RA (2010) The G allele of the JAK2 rs10974944 SNP, part of JAK2 46/1 haplotype, is strongly associated with JAK2 V617F-positive myeloproliferative neoplasms. Ann Hematol 89(10):979–983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N Navarro for her technical assistance and J Corral for the critical review of the manuscript.

Conflict of interest

The authors report no conflict of interests in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ferrer-Marin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soler, G., Bernal-Vicente, A., Antón, A.I. et al. The JAK2 46/1 haplotype does not predispose to CALR-mutated myeloproliferative neoplasms. Ann Hematol 94, 789–794 (2015). https://doi.org/10.1007/s00277-014-2266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2266-y

Keywords

Navigation