Skip to main content

Advertisement

Log in

Three-dimensional reconstruction of the lower limb’s venous system in human fetuses using the computer-assisted anatomical dissection (CAAD) technique

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Objective

The aim of the present study was to show the feasibility and describe the first results of a 3D reconstruction of the venous network of the lower limbs in human fetus using the computer-assisted anatomical dissection (CAAD) technique.

Materials and methods

We used limbs from two human fetuses, respectively, 14 and 15 weeks gestation old. Specimens were fixed in 10 % formalin, embedded in paraffin wax and serially sectioned at 10 m. The histological slices were stained using HES and Masson Trichrome for soft tissues identification. Immunolabeling techniques using the Protein S-100 marker and the D2-40 marker were used to identify nerves and vessels, respectively. Stained slices were aligned manually, labeled and digitalized. The segmentation of all anatomical structures was achieved using the WinSurf® software after manual drawing.

Results

A 3D interactive vectorial model of the whole leg, including skin, bone, muscles, arteries, veins, and nerves was obtained. In all limbs, we observed the presence of a big axial vein traveling along the sciatic nerve. In addition, the femoral vein appeared as a small plexus. Although this is a common anatomical feature at the end of organogenesis, this feature is observed in only 9 % of adults. Usually interpreted as an “anatomical variation of the femoral vein” it should be considered as a light truncular malformation. These observations bring further support to our proposed “angio-guiding nerves” hypothesis.

Conclusion

This preliminary study shows that the CAAD technique provided an accurate 3D reconstruction of the fetal leg veins anatomy. It should bring a new insight for the understanding of the different steps of development of the human venous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abid B, Douard R, Hentati N, Ghorbel A, Delmas V, Uhl JF, Chevallier JM (2013) Computerized three-dimensional reconstruction of the retrohepatic segment of inferior vena cava of a 20 mm human embryo. Morphologie 97(317):59–64

    Article  CAS  PubMed  Google Scholar 

  2. Alsaid B, Karam I, Uhl JF et al (2009) Coexistence of adrenergic and cholinergic nerves in the inferior hypogastric plexus: anatomical and immunohistochemical study with 3D reconstruction in human male fetus. J Anat 214(5):645–654

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alsaid B, Bessede T, Diallo D, Karam I, Uhl JF, Delmas V, Droupy S, Benoît G (2012) Computer-assisted anatomic dissection (CAAD): evolution, methodology and application in intra-pelvic innervation study. Surg Radio Anat 34(8):721–729

    Article  Google Scholar 

  4. Andreassen A, Drewes AM, Assentoft JE, Larsen NE (1992) Computer-assisted alignment of standard serial sections without use of artificial landmarks. A practical approach to the utilization of incomplete information of 3-D reconstruction of the hippocample region. J Neurosci Methods 45:199–207

    Article  Google Scholar 

  5. Arraez-Aybar LA, Mtrida-Velasco JR, Rodriguez-Vazquez J, Jimdnez-Collado J (1994) A computerised technique for morphometry and 3D reconstruction of embryological structures. Surg Radiol Anat 16:419–422

    Article  CAS  PubMed  Google Scholar 

  6. Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271. doi:10.1093/cvr/cvq105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Darrell A, Swoger J, Quintana L, Sharpe J, Marias K, Brady M, Ripoll J. (2008) Improved fluorescence optical projection tomography reconstruction, SPIE Newsroom. doi:10.1117/2.1200810.1329

  8. Fiala JC (2005) Reconstruct: a free editor for serial section microscopy. J Microsc 218:52–61

    Article  CAS  PubMed  Google Scholar 

  9. Gillot C (1998) Dispositifs veineux poplités: hypotheses et certitudes. Phlébologie (French) 51:65–74

    Google Scholar 

  10. Hu W, Zf C, Dj A (1998) Molecular distinction and angiogenetic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor ephrin B4. Cell 93(5):741–753

    Article  Google Scholar 

  11. Karam I, Droupy S, Abd A, Korbage A, Uhl JF, Benoît G, Delmas V (2005) The precise location and nature of the nerves to the male human urethra: histological and immunohistochemical studies with three-dimensional reconstruction. Eur Urol 48(5):858–864

    Article  PubMed  Google Scholar 

  12. Kikuchi S, Sonobe S, Mashiko K, Hiraoka Y, Ohyama N (1997) Three-dimensional image reconstruction for biological micro-specimens using a double-axis fluorescence microscope. Optics Comm 138:21–26

    Article  CAS  Google Scholar 

  13. Lewis FT (1906) Development of the veins in the limbs of rabbit embryos. Am J Anat 5:113–120

    Article  Google Scholar 

  14. Lee BB (2005) New approaches to the treatment of congenital vascular malformations (CVMs). Eur J Vasc Endovasc Surg 30:184–197

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Zhao H, Zhang J (2005) A novel technique of three-dimensional reconstruction segmentation and analysis for sliced images of biological tissues. J Zhejiang Univ Sci B 6(12):1210–1212

    Article  PubMed Central  PubMed  Google Scholar 

  16. Matsuda Y, Ono S, Otake Y, Handa S, Kose K, Haishi T, Yamada S, Uwabe C, Shiota K (2007) Imaging of a large collection of human embryo using a super-parallel MR microscope. Magn Reson Med Sci 6(3):139–146

    Article  PubMed  Google Scholar 

  17. McGinty J, Tahir KB, Laine R, Talbot CB, Dunsby C, Nell MA, Quintana L, Swoger J, Sharpe J (2008) Fluorescence lifetime optical projection tomography. J Biophotonics 1(5):390–394

    Article  CAS  PubMed  Google Scholar 

  18. Mikula K, Peyrieras N, Remesikova M, Sarti A (2008) 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique. In: Eymard R, Herard JM (eds) Finite volumes for complex applications chapter V: problems and perspectives. ISTE and Wiley, London, pp 585–592

    Google Scholar 

  19. Mueller K, Yagel R, Wheller JJ (1999) Fast implementations of algebraic methods for three-dimensional reconstruction from cone-beam data medical imaging. IEEE Trans 18(6):538–548

    CAS  Google Scholar 

  20. Nishimura H, Takano K, Tanimura T, Yasuda M (1968) Normal and abnormal development of human embryos: first report of the analysis of 1,213 intact embryos. Teratology 1:281–290

    Article  CAS  PubMed  Google Scholar 

  21. Pepper MS (2000) Angiogenèse et morphogenèse de l’arbre vasculaire: de la biologie cellulaire à la clinique. Médecine/sciences 16:1378–1386

    Article  Google Scholar 

  22. Shiota K, Yamada S, Uwabe C (2007) Holoprosencephaly in the Kyoto collection of human embryos: phenotypic variability and epidemiologic characteristics. Reprod Toxicol 24(1):77–78

    Article  Google Scholar 

  23. Streicher J, Wolfgang JW, Gerd BM (1997) External marker-based automatic congruencing: a new method of 3D reconstruction from serial sections. Anat Rec 248(4):583–602

    Article  CAS  PubMed  Google Scholar 

  24. Swoger J, Verveer P, Greger K, Huisken J, Stelzer EHK (2007) Multi-view image fusion improves resolution in three-dimensional microscopy. Opt Express 15(13):8029–8042

    Article  PubMed  Google Scholar 

  25. Taylor LS, Porter BC, Nadasdy G, di Sant’Agnese PA, Pasternack D, Wu Z, Baggs RB, Rubens DJ, Parker KJ (2004) Three-dimensional registration of prostate images from histology and ultrasound. Ultrasound Med Biol 30(2):161–168

  26. Uhl JF, Gillot C (2007) Embryology and three-dimensional anatomy of the superficial venous system of the lower limbs. Phlebology 22(5):194–206

    Article  CAS  PubMed  Google Scholar 

  27. Uhl JF, Gillot C (2013) Anatomy and embryology of the small saphenous vein: nerve relationships and implications for treatment. Phlebology 28(1):4–15

    PubMed  Google Scholar 

  28. Yamada S, Samutani RR, Lee ES, Lockett E, Uwabe C, Shiota K, Anderson SA, Lo CW (2010) Developmental atlas of the early trimester human embryo. Develop Dyn 239(6):1585–1595

    Article  Google Scholar 

  29. Yucel S, Baskin LS (2003) Identification of communicating branches among the dorsal, perineal and cavernous nerves of the penis. J Urol 170:153–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the students of the Master of clinical Anatomy of the Paris Descartes University who participated to this work: Laura Gouzien, Laeticia Msika, Rodolphe Bihannic, Vincent Front, and Paul Morin.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Uhl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurobe, N., Hakkakian, L., Chahim, M. et al. Three-dimensional reconstruction of the lower limb’s venous system in human fetuses using the computer-assisted anatomical dissection (CAAD) technique. Surg Radiol Anat 37, 231–238 (2015). https://doi.org/10.1007/s00276-014-1350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-014-1350-2

Keywords

Navigation