Skip to main content
Log in

The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The circumventricular organs (CVOs) occupy seven midline locations around the ventricles. They contain specialized ependymal cells called tanycytes and have an incomplete blood–brain barrier (BBB). We hypothesized that appearances of the lesser known CVOs on contrast-enhanced MRI might lead to confusion in image interpretation whereby they might be mistaken for pathology-related abnormal contrast enhancement. We therefore assessed the normal appearances and prevalence of contrast enhancement of the CVOs on routine clinical brain MRI and reviewed the functional anatomy of the CVOs.

Methods

We retrospectively reviewed sagittal and coronal pre- and post-contrast T1-weighted brain 3T MR images in 100 adult patients with normal findings. We assessed the presence of the median eminence (ME), neurohypophysis (NH), pineal gland (PG), subforniceal organ (SFO), organum vasculosum of the lamina terminalis (OVLT), subcommissural organ (SCO), and the area postrema (AP).

Results

The frequency of contrast enhancement of the seven CVOs was as follows: ME in 100 %, NH in 96 %, PG in 84 %, SFO in 1 %, OVLT in 34 %, SCO in 0 %, and AP in 2 %.

Conclusions

The main CVOs (ME, NH, and PG) are well known and appreciated on brain imaging. However, there is a little awareness of the minor CVOs among neuroimagers. This is the first study of contrast enhancement prevalence of the SF, OV, SC, and AP on brain MRI. All the latter are small, faint, rarely visualized, and therefore not likely to cause misinterpretation with significant sources of pathology that cause breakdown of the BBB, such as tumor or inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altman DG (1991) Mathematics for kappa. In: Altman DG (ed) Practical statistics for medical research, 1st edn. Chapman & Hall, London, pp 406–407

    Google Scholar 

  2. Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204

    Article  PubMed  Google Scholar 

  3. Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41:337–347

    Article  PubMed  CAS  Google Scholar 

  4. Bradley WG Jr (2008) Pros and cons of 3 tesla MRI. J Am Coll Radiol 5:871–878

    Article  PubMed  Google Scholar 

  5. Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 6:551–558

    Article  Google Scholar 

  6. Duvernoy H, Risold P (2007) The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 56:119–147

    Article  PubMed  Google Scholar 

  7. Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 6:543–549

    Article  Google Scholar 

  8. Fry M, Ferguson AV (2007) The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 91:413–423

    Article  PubMed  CAS  Google Scholar 

  9. Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427

    Article  PubMed  CAS  Google Scholar 

  10. Hoyda TD, Smith PM, Ferguson AV (2009) Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. Int J Obes (Lond) 33(Suppl 1):S16–S21

    Article  CAS  Google Scholar 

  11. Inoue Y, Saiwai S, Miyamoto T, Katsuyama J (1994) Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 18:182–186

    Article  PubMed  CAS  Google Scholar 

  12. Johanson CE (2008) Choroid plexus-cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism, and repair. In: Conn PM (ed) Neuroscience in medicine, 3rd edn. Humana Press, Totowa, pp 181–184

    Google Scholar 

  13. Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524

    Article  PubMed  Google Scholar 

  14. Kubo S, Inui T, Yamazato K (2004) Visualisation of the circumventricular organs by fluorescence endoscopy. J Neurol Neurosurg Psychiatry 75:180

    PubMed  CAS  Google Scholar 

  15. Landas S, Fischer J, Wilkin L et al (1985) Demonstration of regional blood-brain barrier permeability in human brain. Neurosci Lett 57:251–256

    Article  PubMed  CAS  Google Scholar 

  16. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  17. Lawlor D, Stone T (2001) Public health and data protection: an inevitable collision or potential for a meeting of minds? Int J Epidemiol 30:1221–1225

    Article  PubMed  CAS  Google Scholar 

  18. Macchi V, Porzionato A, Belloni AS, Stecco C, Parenti A, De Caro R (2006) Immunohistochemical mapping of adrenomedullin in the human medulla oblongata. Peptides 27:1397–1404

    Article  PubMed  CAS  Google Scholar 

  19. McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:III–XII, 1–122

    Google Scholar 

  20. Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios JM, Mengod G (2010) The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat 40:36–42

    Article  PubMed  CAS  Google Scholar 

  21. Porzionato A, Macchi V, Morsut L, Parenti A, De Caro R (2005) Microvascular patterns in human medullary tegmentum at the level of the area postrema. J Anat 206:405–410

    Article  PubMed  Google Scholar 

  22. Porzionato A, Macchi V, Parenti A, De Caro R (2004) The distribution of mast cells in the human area postrema. J Anat 204:141–147

    Article  PubMed  Google Scholar 

  23. Sato D, Fujihara K (2011) Atypical presentations of neuromyelitis optica. Arq Neuropsiquiatr 69:824–828

    Article  PubMed  Google Scholar 

  24. Saunders NR, Liddelow SA, Dziegielewska KM (2012) Barrier mechanisms in the developing brain. Front Pharmacol 3:46

    Article  PubMed  Google Scholar 

  25. Schroter S, Plowman R, Hutchings A et al (2006) Reporting ethics committee approval and patient consent by study design in five general medical journals. J Med Ethics 32:718–723

    Article  PubMed  CAS  Google Scholar 

  26. Shinpo K, Hirai Y, Maezawa H, Totsuka Y, Funahashi M (2012) The role of area postrema neurons expressing H-channels in the induction mechanism of nausea and vomiting. Physiol Behav 107:98–103

    Article  PubMed  CAS  Google Scholar 

  27. Sisó S, Jeffrey M, González L (2010) Sensory circumventricular organs in health and disease. Acta Neuropathol 120:689–705

    Article  PubMed  Google Scholar 

  28. Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085

    Article  PubMed  Google Scholar 

  29. Sun B, Tang YC, Fan LZ, Lin XT, Li ZP, Qi HT, Liu SW (2008) The pineal region: thin sectional anatomy with MR correlation in the coronal plane. Surg Radiol Anat 30:575–582

    Article  PubMed  Google Scholar 

  30. Williams KD, Dean B, Drayer BP (1990) Demonstration of the area postrema with contrast-enhanced MR. AJNR Am J Neuroradiol 11:733–734

    PubMed  CAS  Google Scholar 

  31. Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT (2010) Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflammation 7:70

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Ethical standards

This study complies with the current laws of the country in which it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik F. Massoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horsburgh, A., Massoud, T.F. The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy. Surg Radiol Anat 35, 343–349 (2013). https://doi.org/10.1007/s00276-012-1048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-012-1048-2

Keywords

Navigation