Skip to main content
Log in

Vessel Patency Post Irreversible Electroporation

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to evaluate the effect of Irreversible Electroporation (IRE) on vessel patency in close proximity to the ablation zone.

Materials and Methods

Between January 2010 and November 2013, 101 patients underwent percutaneous IRE procedures using the NanoKnife for primary and metastatic tumors in different organs. Age ranged from 24 to 83 years. A total of 129 lesions were treated. [liver (100), pancreas (18), kidney (3), pelvis (1), aorto-caval lymph nodes (2), adrenal (2), lung (1), retroperitoneal (1), surgical bed of a prior Whipple procedure (1)]. Post treatment contrast-enhanced CT and MRI scans were reviewed to evaluate caliber, patency, and flow defects of vessels in close proximity to the ablation zone (defined as vessels within 0–1 cm from the treatment zone).

Results

A total of 158 vessels were examined for patency on follow-up. The mean distance of the vessel from the treatment zone was 2.3 ± 2.5 mm. Ten vessels within the treatment zone were encased by tumor. Mean tumor size was 2.7 + 1.5 cm. Overall mean follow-up was 10.3 months. Abnormal vascular changes were noted in 7 of 158 (4.4 %) vessels. No significant association was found between distances from the treatment zone and presence of narrowing/thrombosis at the follow-up imaging. (Mann–Whitney U, p = 0.772; logistic regression: p = 0.593; odds ratio: 0.908; CI 0.637–1.294).

Conclusion

This study demonstrates safety of IRE for the treatment of tumors near the large blood vessels and tumors already encasing the vessels. Further studies to substantiate these findings are essential to validate this crucial advantage of IRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rubinsky B (2000) Cryosurgery. Annu Rev Biomed Eng 2:157–187

    Article  CAS  PubMed  Google Scholar 

  2. Wood BJ, Ramkaransingh JR, Fojo T et al (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94(2):443–451

    Article  PubMed Central  PubMed  Google Scholar 

  3. Seki T, Wakabayashi M, Nakagawa T et al (1999) Percutaneous microwave coagulationtherapy for solitary metastatic liver tumors from colorectal cancer: a pilot clinical study. Am J Gastroenterol 94(2):322–327

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg SN, Hahn PF, Tanabe KK et al (1998) Percutaneous radiofrequency tissueablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 9(1 Pt 1):101–111

    Article  CAS  PubMed  Google Scholar 

  5. Lu DS, Raman SS, Vodopich DJ et al (2002) Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR Am J Roentgenol 178(1):47–51

    Article  PubMed  Google Scholar 

  6. Mulier S, Mulier P, Ni Y et al (2002) Complications of radiofrequency coagulation of liver tumours. Br J Surg 89(10):1206–1222

    Article  CAS  PubMed  Google Scholar 

  7. Ng KK, Lam CM, Poon RT et al (2003) Portal vein thrombosis after radiofrequency ablation for recurrent hepatocellular carcinoma. Asian J Surg 26(1):50–53 discussion 54

    Article  PubMed  Google Scholar 

  8. Akahane M, Koga H, Kato N et al (2005) Complications of percutaneous radiofrequency ablation for hepato-cellular carcinoma: imaging spectrum and management. Radiographics 25(Suppl 1):S57–S68

    Article  PubMed  Google Scholar 

  9. Metcalfe MS, Mullin EJ, Texler M et al (2007) The safety and efficacy of radiofrequency and electrolytic ablation created adjacent to large hepatic veins in a porcine model. Eur J Surg Oncol 33(5):662–667

    Article  CAS  PubMed  Google Scholar 

  10. Meloni MF, Andreano A, Bovo G et al (2011) Acute portal venous injury after microwave ablation in an in vivo porcine model: a rare possible complication. J Vasc Interv Radiol 22(7):947–951

    Article  PubMed  Google Scholar 

  11. Chiang J, Hynes K, Brace CL (2012) Flow-dependent vascular heat transfer during microwave thermal ablation. Conf Proc IEEE Eng Med Biol Soc 2012:5582–5585

    PubMed Central  PubMed  Google Scholar 

  12. Davalos RV, Mir IL, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33(2):223–231

    Article  CAS  PubMed  Google Scholar 

  13. Lee EW, Chen C, Prieto VE et al (2010) Advanced hepatic ablation technique for creating complete cell death: irreversible electroporation. Radiology 255(2):426–433

    Article  PubMed  Google Scholar 

  14. Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality—clinical implications. Technol Cancer Res Treat 6(1):37–48

    Article  PubMed  Google Scholar 

  15. Maor E, Ivorra A, Leor J et al (2007) The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat 6(4):307–312

    Article  PubMed  Google Scholar 

  16. Kingham TP, Karkar AM, D’Angelica MI et al (2012) Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J Am Coll Surg 215(3):379–387

    Article  PubMed  Google Scholar 

  17. Tieleman DP, Leontiadou H, Mark AE et al (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125(21):6382–6383

    Article  CAS  PubMed  Google Scholar 

  18. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg. 41:135–160

    Article  CAS  Google Scholar 

  19. Edd JF, Horowitz L, Davalos RV et al (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53(7):1409–1415

    Article  PubMed  Google Scholar 

  20. Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4(6):699–705

    Article  PubMed  Google Scholar 

  21. Curley SA, Izzo F, Delrio P et al (1999) Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 230(1):1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Elias D, Debaere T, Muttillo I et al (1998) Intraoperative use of radiofrequency treatment allows an increase in the rate of curative liver resection. J Surg Oncol 67(3):190–191

    Article  CAS  PubMed  Google Scholar 

  23. Patterson EJ, Scudamore CH, Owen DA et al (1998) Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg 227(4):559–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yamasaki T, Kurokawa F, Shirahashi H et al (2002) Percutaneous radiofrequency ablation therapy for patients with hepatocellular carcinoma during occlusion of hepatic blood flow. Comparison with standard percutaneous radiofrequency ablation therapy. Cancer 95(11):2353–2360

    Article  PubMed  Google Scholar 

  25. Sudheendra D, Neeman Z, Kam A et al (2006) Intermittent hepatic vein balloon occlusion during radiofrequency ablation in the liver. Cardiovasc Intervent Radiol 29(6):1088–1092

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kang TW, Lim HK, Lee MW et al (2014) Perivascular versus nonperivascular small HCC treated with percutaneous RF ablation: retrospective comparison of long-term therapeutic outcomes. Radiology 270(3):888–899. doi:10.1148/radiol.13130753

    Article  PubMed  Google Scholar 

  27. Narayanan G (2011) Irreversible electroporation for treatment of liver cancer. Gastroenterol Hepato (NY) 7(5):313–316

    Google Scholar 

  28. Narayanan G, Hosein PJ, Arora G et al (2012) Percutaneous irreversible electroporation fordownstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol 23(12):1613–1621

    Article  PubMed  Google Scholar 

  29. Cannon R, Ellis S, Hayes D et al (2013) Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol 107(5):544–549

    Article  PubMed  Google Scholar 

  30. Pech M, Janitzky A, Wendler JJ et al (2011) Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol 34(1):132–138

    Article  PubMed  Google Scholar 

  31. Charpentier KP (2012) Irreversible electroporation for the ablation of liver tumors: are we there yet? Arch. Surg 147(11):1053–1061

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Govindarajan Narayanan: Consultant and speaker for Angiodynamics, Biocompatibles and Boston Scientific. Shivank Bhatia: Grant from Society of Interventional Radiology. Ana Echenique, Rekha Suthar, Katuzka Barbery, and Jose Yrizarry have no conflict of interest.

Statement of Human Rights

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindarajan Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, G., Bhatia, S., Echenique, A. et al. Vessel Patency Post Irreversible Electroporation. Cardiovasc Intervent Radiol 37, 1523–1529 (2014). https://doi.org/10.1007/s00270-014-0988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-0988-9

Keywords

Navigation