Skip to main content
Log in

MR-Guided Focused Ultrasound for the Treatment of Uterine Fibroids

  • Review Article/State of the Art
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging–guided focused ultrasound (MRgFUS) ablation of uterine fibroids provides a minimally invasive outpatient technique for targeting and treating symptomatic uterine fibroids. Magnetic resonance imaging provides a guidance platform that has high temporal and spatial resolution for guiding, as well as thermal monitoring of the procedure. The high-intensity focused ultrasound provides a mechanism for delivering large amounts of energy directly into the fibroid without causing detrimental effects to the nontarget tissues. Early and intermediate follow-up of patients treated with MRgFUS provided promising results on the efficacy of the technique for providing symptom relief to patients. As more long-term follow-up data are published, the efficacy of this technique can be compared to more invasive surgical and minimally invasive catheter treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wood RW, Loomis AL (1927) The physical and biological effects of high frequency sound waves of great intensity. Phil Mag J Sci 4:417–436

    CAS  Google Scholar 

  2. ter Haar GR (2004) Ultrasound biophysics. In: Hill CR, Bamber JC, ter Haar GR (eds) Physical principles of medical ultrasonics: ultrasonic biophysics, 2nd edn. Wiley, New York, pp 349–406

    Google Scholar 

  3. Ter Haar GR (1988) Biological effects of ultrasound in clinical applications. In: Suslick KS (ed) Ultrasound: its chemical, physical, and biological effects. VCH Publishers, New York, pp 305–320

    Google Scholar 

  4. Vaezy S, Andrew M, Kaczkowski P, Crum L (2001) Image-guided acoustic therapy. Annu Rev Biomed Eng 3:375–390

    Article  PubMed  CAS  Google Scholar 

  5. Apfel RE (1982) Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer Suppl 5:140–146

    PubMed  CAS  Google Scholar 

  6. Flynn HG (1982) Generation of transient cavities in liquids by microsecond pulses of ultrasound. J Acoust Soc Am 72:1926–1932

    Article  Google Scholar 

  7. Robinson TC, Lele PP (1972) An analysis of lesion development in the brain and in plastics by high-intensity focused ultrasound at low-megahertz frequencies. J Acoust Soc Am 51:1333–1351

    Article  PubMed  CAS  Google Scholar 

  8. Sibille A, Prat F, Chapelon JY et al (1993) Extracorporeal ablation of liver tissue by high-intensity focused ultrasound. Oncology 50:375–379

    Article  PubMed  CAS  Google Scholar 

  9. Hynynen K, Colucci V, Chung A, Jolesz F (1996) Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol 22:1071–1077

    Article  PubMed  CAS  Google Scholar 

  10. Vaezy S, Martin R, Schmiedl U et al (1997) Liver hemostasis using high-intensity focused ultrasound. Ultrasound Med Biol 23:1413–1420

    Article  PubMed  CAS  Google Scholar 

  11. Basauri L, Lele PP (1962) A simple method for production of trackless focal lesions with focused ultrasound: statistical evaluation of the effects of irradiation on the central nervous system of the cat. J Physiol 160:513–534

    PubMed  CAS  Google Scholar 

  12. Dunn F, Lohnes JE, Fry FJ (1975) Frequency dependence of threshold ultrasonic dosages for irreversible structural changes in mammalian brain. J Acoust Soc Am 58:512–514

    Article  PubMed  CAS  Google Scholar 

  13. Fry FJ, Kossoff G, Eggleton RC, Dunn F (1970) Threshold ultrasound dosages for structural changes in the mammalian brak. J Acoust Soc Am 48:1413–1417

    Article  PubMed  Google Scholar 

  14. Frizzell LA (1988) Threshold dosages for damage to mammalian liver by high intensity focused ultrasound. IEEE Trans Ultrason Ferroelectric Freq Control 35:578–581

    Article  CAS  Google Scholar 

  15. Frizzell LA, Linke CA, Carstensen EL, Fridd CW (1977) Thresholds for focal ultrasonic lesions in rabbit kidney, liver, and testicle. IEEE Trans Biomed Eng 24:393–396

    Article  PubMed  CAS  Google Scholar 

  16. Hill CR, Rivens I, Vaughan MG, ter Haar GR (1994) Lesion development in focused ultrasound surgery: a general model. Ultrasound Med Biol 20(3):259–269

    Google Scholar 

  17. Pond JB (1970) The role of heat in the production of ultrasonic focal lesions. J Acoust Soc Am 47:1607–1611

    Article  PubMed  CAS  Google Scholar 

  18. Furusawa H, Namba K, Thomsen S et al (2006) Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg 203:54–63

    Article  PubMed  Google Scholar 

  19. Gianfelice D, Khiat A, Amara M et al (2003) MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness—initial experience. Radiology 227:849–855

    Article  PubMed  Google Scholar 

  20. Ng CK, Moussa M, Downey DB, Chin JL (2007) Salvage cryoablation of the prostate: followup and analysis of predictive factors for outcome. J Urol 178(4 pt 1):1253–1257

    Article  PubMed  Google Scholar 

  21. Muto S, Yoshii T, Saito K et al (2008) Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn J Clin Oncol 38:192–199

    Article  PubMed  Google Scholar 

  22. Jolesz FA, Hynynen K, McDannold N et al (2004) Noninvasive thermal ablation of hepatocellular carcinoma by using magnetic resonance imaging-guided focused ultrasound. Gastroenterology 127(5 suppl 1):S242–S247

    Article  PubMed  Google Scholar 

  23. Wu F, Chen WZ, Bai J et al (2001) Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol 27:1099–1106

    Article  PubMed  CAS  Google Scholar 

  24. Wu F, Wang ZB, Chen WZ et al (2004) Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol 11:1061–1069

    Article  PubMed  Google Scholar 

  25. Wang X, Sun J (2002) High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin Med J 115:1332–1335

    PubMed  Google Scholar 

  26. Hesley GK, Gorny KR, Henrichsen TL et al (2008) A clinical review of focused ultrasound ablation with magnetic resonance guidance: an option for treating uterine fibroids. Ultrasound Q 24:131–139

    Article  PubMed  Google Scholar 

  27. Hindley J, Gedroyc WM, Regan L et al (2004) MRI guidance of focused ultrasound therapy of uterine fibroids: early results. Am J Roentgenol 183:1713–1719

    Google Scholar 

  28. Stewart EA, Gedroyc WMW, Tempany CMC et al (2003) Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 189:48–54

    Article  PubMed  Google Scholar 

  29. Hill CR, ter Haar GR (1995) High intensity focused ultrasound—potential for cancer treatment. Br J Radiol 68(816):1296–1303

    Article  PubMed  CAS  Google Scholar 

  30. Hynynen K, Damianou C, Darkazanli A et al (1993) The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery. Ultrasound Med Biol 19:91–92

    Article  PubMed  CAS  Google Scholar 

  31. Cline HE, Hynynen K, Watkins RD et al (1995) Focused US system for MR imaging-guided tumor ablation. Radiology 194:731–737

    PubMed  CAS  Google Scholar 

  32. Schneider WG, Bernstein HJ, Pople JA (1958) Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules. J Chem Phys 28:601–607

    Article  CAS  Google Scholar 

  33. Hindman JC (1966) Proton resonance shift of water in gas and liquid states. J Chem Phys 44:4582–4592

    Article  CAS  Google Scholar 

  34. Kuroda K, Abe K, Tsutsami S et al (1993) Water proton magnetic resonance spectroscopic imaging. Adv Techn Clin Appl Biomed Thermol 13:43–62

    Google Scholar 

  35. Hynynen K, Freund WR, Cline HE et al (1996) A clinical, noninvasive, MR imaging-monitored ultrasound surgery method. Radiographics 16:185–195

    PubMed  CAS  Google Scholar 

  36. Vitkin IA, Moriarty JA, Peters RD et al (1997) Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study. Med Phys 24:269–277

    Article  PubMed  CAS  Google Scholar 

  37. McDannold N, Tempany CM, Fennessy FM et al (2006) Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology 240:263–272

    Article  PubMed  Google Scholar 

  38. Stewart EA, Rabinovici J, Tempany CMC et al (2006) Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil Steril 85:22–29

    Article  PubMed  Google Scholar 

  39. Tempany CMC, Stewart EA, McDannold N et al (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226:897–905

    Article  PubMed  Google Scholar 

  40. Smart OC, Hindley JT, Regan L, Gedroyc WG (2006) Gonadotrophin-releasing hormone and magnetic-resonance-guided ultrasound surgery for uterine leiomyomata. Obstet Gynecol 108:49–54

    Article  PubMed  CAS  Google Scholar 

  41. Smart OC, Hindley JT, Regan L, Gedroyc WMW (2006) Magnetic resonance guided focused ultrasound surgery of uterine fibroids—the tissue effects of GnRH agonist pre-treatment. Eur J Radiol 59:163–167

    Article  PubMed  CAS  Google Scholar 

  42. Funaki K, Fukunishi H, Funaki T et al (2007) Magnetic resonance-guided focused ultrasound surgery for uterine fibroids: relationship between the therapeutic effects and signal intensity of preexisting T2-weighted magnetic resonance images. Am J Obstet Gynecol 196(184):e181–e186

    Google Scholar 

  43. Nikolaidis P, Siddiqi AJ, Carr JC et al (2005) Incidence of nonviable leiomyomas on contrast material-enhanced pelvic MR imaging in patients referred for uterine artery embolization. J Vasc Interv Radiol 16:1465–1471

    Article  PubMed  Google Scholar 

  44. Roberts A (2008) Magnetic resonance-guided focused ultrasound for uterine fibroids. Semin Intervent Radiol 25:394–405

    Article  PubMed  Google Scholar 

  45. Rabinovici J, Inbar Y, Revel A et al (2007) Clinical improvement and shrinkage of uterine fibroids after thermal ablation by magnetic resonance–guided focused ultrasound surgery. Ultrasound Obstet Gynecol 30:771–777

    Article  PubMed  CAS  Google Scholar 

  46. Leon-Villapalos J, Kaniorou-Larai M, Dziewulski P (2005) Full thickness abdominal burn following magnetic resonance guided focused ultrasound therapy. Burns 31:1054–1055

    Article  PubMed  Google Scholar 

  47. So MJ, McDannold NJ, Fennessy FM (2005) Evaluation of the impact of body mass and abdominal fat on MR-guided focused ultrasound surgery for uterine fibroids. Proc Intl Soc Mag Reson Med 13:2141

    Google Scholar 

  48. Hynynen K, DeYoung D (1988) Temperature elevation at muscle–bone interface during scanned, focused ultrasound hyperthermia. Int J Hyperth 4:267–279

    Article  CAS  Google Scholar 

  49. Hesley GK, Felmlee JP, Gebhart JB et al (2006) Noninvasive treatment of uterine fibroids: early Mayo Clinic experience with magnetic resonance imaging-guided focused ultrasound. Mayo Clin Proc 81:936–942

    Article  PubMed  Google Scholar 

  50. Fennessy FM, Tempany CM, McDannold NJ et al (2007) Uterine leiomyomas: MR imaging-guided focused ultrasound surgery—results of different treatment protocols. Radiology 243:885–893

    Article  PubMed  Google Scholar 

  51. Stewart EA, Gostout B, Rabinovici J et al (2007) Sustained relief of leiomyoma symptoms by using focused ultrasound surgery. Obstet Gynecol 110(2 pt 1):279–287

    Article  PubMed  Google Scholar 

  52. Gorny KR, Woodrum DA, Brown DL et al (2011) Magnetic resonance-guided focused ultrasound of uterine fibroids: review of a 12-month outcome of 130 clinical patients. J Vasc Interv Radiol 22:857–864

    Article  PubMed  Google Scholar 

  53. Qidwai GI, Caughey AB, Jacoby AF (2006) Obstetric outcomes in women with sonographically identified uterine leiomyomata. Obstet Gynecol 107(2 pt 1):376–382

    Article  PubMed  Google Scholar 

  54. Pritts RA (2001) Fibroids and infertility: a systematic review of the evidence. Obstet Gynecol Surv 56:483–491

    Article  PubMed  CAS  Google Scholar 

  55. Gavrilova-Jordan LP, Rose CH, Traynor KD et al (2007) Successful term pregnancy following MR-guided focused ultrasound treatment of uterine leiomyoma. J Perinatol 27:59–61

    Article  PubMed  CAS  Google Scholar 

  56. Hanstede MMF, Tempany CMC, Stewart EA (2007) Focused ultrasound surgery of intramural leiomyomas may facilitate fertility: a case report. Fertil Steril 88(497):e495–e497

    Google Scholar 

  57. Morita Y, Ito N, Ohashi H (2007) Pregnancy following MR-guided focused ultrasound surgery for a uterine fibroid. Int J Gynaecol Obstet 99:56–57

    Article  PubMed  CAS  Google Scholar 

  58. Rabinovici J, Inbar Y, Eylon SC et al (2006) Pregnancy and live birth after focused ultrasound surgery for symptomatic focal adenomyosis: a case report. Hum Reprod 21:1255–1259

    Article  PubMed  CAS  Google Scholar 

  59. Rabinovici J, David M, Fukunishi H et al (2010) Pregnancy outcome after magnetic resonance-guided focused ultrasound surgery (MRgFUS) for conservative treatment of uterine fibroids. Fertil Steril 93:199–209

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Woodrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesley, G.K., Gorny, K.R. & Woodrum, D.A. MR-Guided Focused Ultrasound for the Treatment of Uterine Fibroids. Cardiovasc Intervent Radiol 36, 5–13 (2013). https://doi.org/10.1007/s00270-012-0367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-012-0367-3

Keywords

Navigation