Skip to main content
Log in

Nature of type IaB diamonds from the Mir kimberlite pipe (Yakutia): evidence from spectroscopic observation

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In this study, the specific features of structural defects of type IaB diamonds from the Mir kimberlite pipe (Yakutian diamondiferous province) have been characterized using FTIR and photoluminescence spectroscopy. Mineral inclusions in these diamonds [olivine (Ol), orthopyroxene (OPx), chromite (Chr), sulphide (Sf)] correspond to associations of peridotite rocks at the base of the lithosphere. Nitrogen content in type IaB diamonds shows significant variations, suggesting different growth media and/or several growth stages. A specific feature of these diamonds is the absence or very small amount of platelets, which may be related to annealing during their long-term residence at the temperatures of the base of the lithosphere. All studied diamonds show the presence of hydrogen defects that are active in IR spectra with an intense line at 3107 cm−1, and additional weaker lines at 3085 and 3237 cm−1, which correlated with high nitrogen content. Type IaB diamonds are also characterized by the presence of nitrogen–nickel luminescence centres S2, S3 and 523.2 nm. This feature distinguishes them from superdeep diamonds with extreme nitrogen aggregation states, which clearly attest to different growth conditions and crystallization media of type IaB diamonds from the Mir kimberlite pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babich YV, Feigelson BN, Fisher D, Yelisseyev AP, Nadolinny VA, Baker JM (2000) The growth rate effect on the nitrogen aggregation in HTHP grown synthetic diamonds. Diamond Relat Mater 9:893–896. doi:10.1016/S0925-9635(99)00205-8

    Article  Google Scholar 

  • Banas A, Stachel T, Muehlenbachs K, McCandless TE (2007) Diamonds from the Buffalo Head Hills, Alberta: formation in a non-conventional setting. Lithos 93:199–213. doi:10.1016/jlithos.2006.07.001

    Article  Google Scholar 

  • Barry JC, Bursill LA, Hutchison JL, Lang AR, Rackhman GM, Sumida N (1987) On voidites: a high resolution transmission electron microscopic study of faceted void-like defects in natural diamonds. Phil Trans R Soc Lond A 321:361–401. doi:10.1098/rsta.1987.0018

    Article  Google Scholar 

  • Bogush IN, Vasiliev EA, Pomazanskiy BS (2007) Comparison of type IaB diamonds from some placers of Yakutia and Brazil. Crystal Genesis and Mineralogy. In: Proceedings II International Conference St. Petersburg, Russia, pp 230–232

  • Bokiy GB, Bezrukov GN, Kluyev YA, Naletov AM, Nepsha VI (1986) Natural and synthetic diamonds. Nauka, Moscow (in Russian)

    Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1994) Infrared absorption by the B nitrogen aggregate in diamond. Philosophical Magazine B 72:351–361. doi:10.1080/13642819508239089

    Article  Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the B nitrogen aggregate in diamond. Phil Mag B72(3):351–361. doi:10.1080/13642819508239089

    Article  Google Scholar 

  • Bulanova GP, Griffin WL, Ryan CG, Shestakova OY, Barnes SJ (1996) Trace elements in sulfide inclusions from Yakutian diamonds. Contrib Miner Petrol 124:111–125. doi:10.1007/s004100050179

    Article  Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1(2):79–84. doi:10.2113/gselements.1.2.79

    Article  Google Scholar 

  • Chepurov AI, Jimulev EI, Yelisseyev AP, Sonin VM, Fedorov II (2009) On genesis of low nitrogen diamonds. Geochemistry 5:551–555 (in Russian)

    Google Scholar 

  • Collins AT (1982) Colour centers in diamond. J Gemmol 18:37–75

    Article  Google Scholar 

  • Collins AT, Woods GS (1982) Cathodoluminescence from ‘giant’ platelets, and of the 2·526 eV vibronic system, in type Ia diamonds. Phil Mag B 45(4):385–397. doi:10.1080/01418638208227446

    Article  Google Scholar 

  • Collins AT, Connor A, Ly CH, Shareef A, Spear PM (2005) High-temperature annealing of optical centers in type-I diamond. J Appl Phys 97: 083517 (1–10). doi:10.1063/1.1866501

  • Davies RM, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume? Lithos 77:99–111. doi:10.1016/j.lithos.2004.04.008

    Article  Google Scholar 

  • De Weerdt F, Pal’yanov NY, Collins AT (2003) Absorption spectra of hydrogen in 13C diamond produced by high-pressure, high-temperature synthesis. J Phys: Condens Matter 15:3163–3170. doi:10.1088/0953-8984/15/19/316

    Google Scholar 

  • Dobrinets A, Vins VG, Zaitsev AM (2013) HPHT-treated diamonds. Springer, Berlin

    Book  Google Scholar 

  • Doherty MW, Manson NB, Neil B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528:1–45. doi:10.1016/j.physrep.2013.02.001

    Article  Google Scholar 

  • Efimova ES, Sobolev NV, Pospelova LN (1983) Sulfide inclusions in diamonds and their paragenesis. Zap Vses Min Ob-va 112:300–310

    Google Scholar 

  • Epelboym M, DelRe N, Widemann A, Zaitsev A, Dobrinets I (2011) Characterization of some natural and treated colorless and colored diamonds. G&G 47:133

    Google Scholar 

  • Evans T (1992) Aggregation of nitrogen in diamond.The properties of natural and synthetic diamond. Field JE (Ed). Academic Press. London. pp 259–290

  • Evans T, Harris JW (1989) Nitrogen aggregation, inclusion equilibrium temperatures and the age of diamonds. In:Ross J et al. (Ed.), Kimberlite and related rocks. Geological society of Australia, Special Publication 14, vol 2. Blackwell, Carlton, pp 1001–1006

  • Evans T, Qi Z (1982) The kinetics of the aggregation of nitrogen atoms in diamond. Proc R Soc Lond A 381:159–178. doi:10.1098/rspa.1982.0063

    Article  Google Scholar 

  • Evans T, Kiflavi I, Luiten W, Van Tendello G, Woods GS (1995) Conversion of platelets into dislocation loops and voidite formation in type IaB diamonds. Proc Roy Soc Lond A 449:295–313

    Article  Google Scholar 

  • Fedorova EN, Logvinova AM, Luk’yanova LI, Sobolev NV (2013) Typomorphic characteristics of the Ural diamonds (from FTIR spectroscopy data). Russ Geol Geophys 54:1458–1470

    Article  Google Scholar 

  • Ferrer N, Nogués-Carrulla JM (1996) Characterization study of cut gem diamond by IR spectroscopy. Diam Relat Mater 5:598–602. doi:10.1016/0925-9635(95)00479-3

    Article  Google Scholar 

  • Field JE (1992) The properties of natural and synthetic diamond. Academic Press, London

    Google Scholar 

  • Fisher D, Lawson SC (1998) The effect of nickel and cobalt on the aggregation of nitrogen in diamond. Diam Relat Mater 7(2–5):299–304. doi:10.1016/S0925-9635(97)00246-X

    Article  Google Scholar 

  • Fritsch E, Scarratt K (1993) Gemmological properties of type Ia diamonds with an unusually high hydrogen content. J Gemmol 23(8):15–24

    Article  Google Scholar 

  • Fritsch E, Hainschwang T, Massi L, Rondeau B (2007) Hydrogen-related optical centres in natural diamond: an update. New Diam Front Carbon Technol 17(2):63–88

    Google Scholar 

  • Gaillou E, Post J, Bassim N, Zaitsev AM, Rose T, Fries M, Stroud RM, Steele A, Butler JE (2010) Spectroscopic and microscopic characterization of color lamellae in natural pink diamonds. Diam Relat Mater 19:1207–1220. doi:10.1016/j.diamond.2010.06.015

    Article  Google Scholar 

  • Goss JP, Coomer BJ, Jones R, Fall CJ, Briddon PR, Öberg S (2003) Extended defects in diamond: the interstitial platelet. Phys Rev B 67:165208. doi:10.1103/PhysRevB.67.165208

    Article  Google Scholar 

  • Goss JP, Briddon PR, Hill V, Jones R, Rayson MJ (2014) Identification of the structure of the 3107 cm−1 H-related defect in diamond. J Phys: Condens Matter 26:145801. doi:10.1088/0953-8984/26/14/145801

    Google Scholar 

  • Graham RJ, Buseck PR (1994) Cathodoluminescence of brown diamonds as observed by transmission electron microscopy. Phil Mag Part B 70(6):1177–1185. doi:10.1080/01418639408240282

    Article  Google Scholar 

  • Hainschwang T, Katrusha A, Vollstaedt H (2005) HPHT treatment of different classes of type I brown diamonds. J Gemmol 29(5/6):261–273. doi:10.15506/JoG.2005.29.5.261

    Article  Google Scholar 

  • Hutchison MT, Cartigny P, Harris JW (1999) Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil. In: Proceedings 7th International kimberlite Conference Red Roof Designs, Cape Town, pp 372–382

  • Iakoubovskii K, Adriaenssens GJ (1999) Photoluminescence in CVD diamond films. Phys Stat Sol. (a) 172:123. doi:10.1002/(SICI)1521-396X(199903)172:1<123:AID-PSSA123>3.0.CO;2-E

    Article  Google Scholar 

  • Iakoubovskii K, Adriaenssens GJ (2002) Optical characterization of naturalArgyle diamonds. Diam Relat Mater 11:125–131. doi:10.1016/S0925-9635(01),00533-7

    Article  Google Scholar 

  • Kaminsky FV, Khachatryan GK (2004) The relationship between the distribution of nitrogen impurity centres in diamond crystals and their internal structure and mechanism of growth. Lithos 77:255–271. doi:10.1016/j.lithos.2004.04.035

    Article  Google Scholar 

  • Kaminsky FV, Khachatryan GK, Andreazza P, Araujo D, Griffin WL (2009) Super-deep diamonds from kimberlities in the Juina area, Mato Grosso State, Brazil. Lithos 112:833–842. doi:10.1016/j.lithos.2009.03.036

    Article  Google Scholar 

  • Kiflawi I, Bruley J (2000) The nitrogen aggregation sequence and the formation of voidites in diamond. Diam Relat Mater 9:87–93. doi:10.1016/S0925-9635(99)002

    Article  Google Scholar 

  • Kiflawi I, Mayer AE, Spear PM, Van Wyk JA, Woods GS (1994) Infrared absorption by the single nitrogen and A defect centres in diamond. Phil Mag B 69:1141–1147. doi:10.1080/01418639408240184

    Article  Google Scholar 

  • Kupriyanov IN, Pal’yanov NY, Shatsky VS, Kalinin AA, Nadolinny VA, Yuryeva OP (2006) Study of the transformation of hydrogen containing centers in diamond at high PT parameters. Dokl Earth Sci 406(1):69–73

    Article  Google Scholar 

  • Lavrent’ev YG, Korolyuk VN, Usova LV, Nigmatulina EN (2015) Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ Geol Geophys 56:1428–1436. doi:10.1016/j.rgg.2015.09.005

    Article  Google Scholar 

  • Lindblom J, Holsa H, Papunen H, Häkkänen H (2005) Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am Mineral 90:428–440. doi:10.2138/am.2005.1681

    Article  Google Scholar 

  • Nadolinny VA, Yelisseyev AP (1994) New paramagnetic centres containing nickel ions in diamond. Diam Relat Mater 3:17–21. doi:10.1016/0925-9635(94),90024-8

    Article  Google Scholar 

  • Nadolinny VA, Afanasyev VP, Pokhilenko NP, Yuryeva OP, Eliseev AP, Efimova ES, Logvinova AM (1995) The possibility of using the optical properties of diamonds to diagnose their paragenesis. Dokl Ross Akad Nauk (in Russian) 341:516–518

    Google Scholar 

  • Nadolinny VA, Yelisseyev AP, Baker JM, Twitchen DJ, Newton ME, Feigelson BN, Yuryeva OP (2000) Mechanisms of nitrogen aggregation in nickel- and cobalt-containing synthetic diamonds. Diam Relat Mater 9:883–886. doi:10.1016/S0925-9635(99),00356-8

    Article  Google Scholar 

  • Nadolinny VA, Yurjeva OP, Pokhilenko NP (2009) EPR and luminescence data on the nitrogen aggregation in diamonds from Snap Lake dyke system.Lithos 112S: 865–869. doi: 10.1016/j.lithos.2009.05.045

  • Nazare MH, Woods GS, Assunção MC (1992) The 2.526 eV luminescence band in diamond. Mater Sci Eng BI 1:341–345. doi:10.1016/0921-5107(92)90237-4

    Article  Google Scholar 

  • Pezzagna S, Rogalla D, Wildanger D, Meijer J, Zaitsev A (2011) Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks. New J Phys 13:035024

    Article  Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333(6041):434–436

    Article  Google Scholar 

  • Smith CP, Bosshard G, Ponahlo J, Hammer VMF, Klapper H, Schmetzer K (2000) GE POL diamonds: before and after. G&G 36(3):192–215. doi:10.5741/GEMS.36.3.192

    Article  Google Scholar 

  • Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the Upper Mantle. Amer Geophys Union, Washington, DC, p 279

    Google Scholar 

  • Sobolev EV (1978) Nitrogen centers and crystal growth of natural diamond. In: Problems of lithosphere and upper mantle petrology (V.S. Sobolev ed.) Nauka Press, Novosibirsk, 245–255 (in Russian)

  • Sobolev N, Logvinova A, Zedgenizov D, Pokhilenko N, Malygina E, Kuzmin D, Sobolev A (2009) Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 112:701–713. doi:10.1016/j.lithos.2009.06.038

    Article  Google Scholar 

  • Stachel T, Harris J (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32. doi:10.1016/j.oregeorev.2007.05.002

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Shimizu N, Brey GP (2005) Diamonds from Jagersfonteinn (South Africa): messengers from the sublithospheric mantle. Eur J Miner 17:423–440. doi:10.1007/s00410-005-0035-6

    Article  Google Scholar 

  • Taylor WR, Jaques A, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australasian diamonds: time-temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75:1290–1310

    Google Scholar 

  • Titkov SV, Shigley JE, Breeding CM, Mineeva RM, Zudin NG, Sergeev AM (2008) Natural color purple diamonds from Siberia. G&G44 (1):56–64. doi:10.5741/GEMS.44.1.56

  • Tretiakova L (2009) Spectroscopic methods for the identification of natural yellow gem-quality diamond. Eur J Miner 21(1):43–50. doi:10.1127/0935-1221/2009/0021-1885

    Article  Google Scholar 

  • Van Tendeloo G, Luyten W, Woods GS (1990) Voidites in pure type of IaB diamonds. Phil Mag. Lett 61:343–348. doi:10.1080/09500839008206503

    Article  Google Scholar 

  • Woods GS, Collins AT (1983) Infrared absorption spectra of hydrogen complexes in type I diamonds. J Phys Chem Solids 44:471–475. doi:10.1016/0022-3697(83)90078-1

    Article  Google Scholar 

  • Yang Z, Liang R, Zeng X, Peng M (2012) A microscopy and FTIR and PL spectra study of polycrystalline diamonds from Mengyin kimberlite pipes. Int Sch Res Network ISRN Spectrosc ID. doi:10.5402/2012/871824

    Google Scholar 

  • Yuryeva O, Rakhmanova M, Nadolinny V, Zedgenizov D, Kagi H, Komarovskikh A (2015) The characteristic photoluminescence and EPR features of superdeep diamonds (São–Luis, Brasil). Phys Chem Minerals 42:707–722. doi:10.1007/s00269-015-0756-7

    Article  Google Scholar 

  • Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, Berlin

    Book  Google Scholar 

  • Zedgenizov DA, Kagi H, Shatsky VS, Ragozin AL (2014) Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem Geol 363:114–124. doi:10.1016/j.chemgeo.2013.10.033

    Article  Google Scholar 

Download references

Acknowledgements

We are sincerely grateful to Dr. F.V. Kaminsky and the anonymous reviewer for useful comments and recommendations. This work was supported by the Russian Science Foundation under Grant No. 16-17-10067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga P. Yuryeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuryeva, O.P., Rakhmanova, M.I. & Zedgenizov, D.A. Nature of type IaB diamonds from the Mir kimberlite pipe (Yakutia): evidence from spectroscopic observation. Phys Chem Minerals 44, 655–667 (2017). https://doi.org/10.1007/s00269-017-0890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0890-5

Keywords

Navigation