Skip to main content

Advertisement

Log in

Geomaterials related to photovoltaics: a nanostructured Fe-bearing kuramite, Cu3SnS4

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The successful synthesis of nanoparticles of Fe-bearing kuramite, (Cu,Fe)3SnS4, is reported in this study. Nanocrystalline powders were obtained through a mild, environmentally friendly and scalable solvothermal approach, in a single run. The sample was the object of a multidisciplinary investigation, including X-ray diffraction and absorption, scanning electron microscopy and microanalysis, electron paramagnetic resonance, diffuse reflectance and Mössbauer spectroscopy as well as SQUID magnetometry. The nanoparticles consist of pure Fe-bearing kuramite, exhibiting tetragonal structure. The valence state of the metal cations was assessed to be Cu+, Sn4+ and Fe3+. The material presents a band gap value of 1.6 eV, which is fully compatible with solar cell applications. The uptake of Fe by nanokuramite opens a compositional field where the physical properties can be tuned. We thus foster the application of Fe-bearing nanokuramite for photovoltaics and energy storage purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adelifard M, Eshghi H, Mohagheghi MMB (2012) Synthesis and characterization of nanostructural CuS–ZnS binary compound thin films prepared by spray pyrolysis. Opt Commun 285:4400–4404

    Article  Google Scholar 

  • Bernardini GP, Bonazzi P, Corazza M, Corsini F, Mazzetti G, Poggi L, Tanelli G (1990) New data on the Cu2FeSnS4–Cu2ZnSnS4 pseudobinary system at 750 and 550°C. Eur J Mineral 2:219–225

    Article  Google Scholar 

  • Bernardini GP, Borrini D, Caneschi A, Di Benedetto F, Gatteschi D, Ristori S, Romanelli M (2000) EPR and SQUID magnetometry study of Cu2FeSnS4 (stannite) and Cu2ZnSnS4 (kesterite). Phys Chem Miner 27:453–461

    Article  Google Scholar 

  • Bihouix P, de Guillebon B (2010) Quel futur pour le métaux?. EDP Sciences, Paris. ISBN 978-2-7598-0549-5

    Google Scholar 

  • Bonazzi P, Bindi L, Bernardini GP, Menchetti S (2003) A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite–kësterite series, Cu2FeSnS4–Cu2ZnSnS4. Can Mineral 41:639–647

    Article  Google Scholar 

  • Botti S, Kammerlander D, Marques MAL (2011) Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods. Appl Phys Lett 98:241915

    Article  Google Scholar 

  • BP Statistical Review of World Energy (2014) http://bp.com/statisticalreview

  • Caneschi A, Cipriani C, Di Benedetto F, Sessoli R (2004) Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite. Phys Chem Minerals 31(3):190–193

    Article  Google Scholar 

  • Cao M, Li C, Zhang B, Huang J, Wang L, Shen Y (2015) PVP assisted solvothermal synthesis of uniform Cu2FeSnS4 nanospheres. J Alloys Compd 622:695–702

    Article  Google Scholar 

  • d’Acapito F, Trapananti A, Torrengo S, Mobilio S (2014) X-ray absorption spectroscopy: the Italian beamline GILDA at the ESRF. Not Neutroni Luce Sincrotrone 19(2):14–23

    Google Scholar 

  • Deffeyes KS (2008) Hubbert’s peak: the impeding world oil shortage. Princeton University Press, Princeton

    Google Scholar 

  • Di Benedetto F, Bernardini GP, Borrini D, Lottermoser W, Tippelt G, Amthauer G (2005) 57Fe- and 119Sn-Mössbauer study on stannite (Cu2FeSnS4)-kesterite (Cu2ZnSnS4) solid solution. Phys Chem Minerals 31:683–690

    Article  Google Scholar 

  • Di Benedetto F, Borgheresi M, Caneschi A, Chastanet G, Cipriani C, Gatteschi D, Pratesi G, Romanelli M, Sessoli R (2006) First evidence of natural superconductivity: covellite. Eur J Mineral 18(3):283–287

    Article  Google Scholar 

  • Di Benedetto F, Evstigneeva T, Borgheresi M, Caneschi A, Romanelli M (2009) The unusual magnetic properties of kuramite–stannite pseudobinary series: a SQUID and EPR survey. Phys Chem Minerals 36:301–309

    Article  Google Scholar 

  • Di Benedetto F, Borrini D, Caneschi A, Fornaciai G, Innocenti M, Lavacchi A, Massa CA, Montegrossi G, Oberhauser W, Pardi LA, Romanelli M (2011a) Magnetic properties and cation ordering of nanopowders of the synthetic analogue of kuramite, Cu3SnS4. Phys Chem Minerals 38:483–490

    Article  Google Scholar 

  • Di Benedetto F, Da Pelo S, Caneschi A, Lattanzi P (2011b) Chemical state of arsenic and copper in enargite: evidences from EPR and X-ray absorption spectroscopies, and SQUID magnetometry. N Jb Miner Abh 188(1):11–19

    Article  Google Scholar 

  • Evstigneeva TL, Rusakov VS, Kabalov Yu-K (2003) Isomorphism in the minerals of stannite-family. New Data Mineral 38:65–69

    Google Scholar 

  • Graedel TE (2011) On the future availability of the energy metals. Annu Rev Mater Res 41:323–335

    Article  Google Scholar 

  • Hall SR, Stewart JM (1973) The crystal structure refinement of chalcopyrite, CuFeS2. Acta Crystallogr A B29:579–585

    Article  Google Scholar 

  • Hall SR, Szymanski JT, Stewart JM (1978) Kesterite, Cu2(Zn, Fe)SnS4, and stannite, Cu2(Fe, Zn)SnS4, structurally similar but distinct minerals. Can Mineral 16:131–137

    Google Scholar 

  • Hu H, Liu Z, Yang B, Chen X, Qian Y (2005) Template-mediated growth of Cu3SnS4 nanoshell tubes. J Cryst Growth 284:226–234

    Article  Google Scholar 

  • Jiang X, Xu W, Tan R, Song W, Chen J (2013) Solvothermal synthesis of highly crystallized quaternary chalcogenide Cu2FeSnS4 particles. Mater Lett 102–103:39–42

    Article  Google Scholar 

  • Kovalenker VA (1981) Kuramite, Cu3SnS4, a new mineral of the stannite group. Int Geol Rev 23(3):365–370

    Article  Google Scholar 

  • Küblböck K (2013) The EU raw materials initiative—scope and critical assessment 2013. http://www.oefse.at/Downloads/publikationen/eu_raw_materials_BP8.pdf

  • Kulikova IM, Evstigneeva TL, Bortnikov NS (2005) Study of chemical bonding of copper atoms in minerals of the stannite group, kuramite–stannite series. Dokl Earth Sci 401(3):403–405

    Google Scholar 

  • Lagarec K, Rancourt DG (1998) Extended Voigt-based analytic line shape method for determining N-dimensional correlated hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Methods 129:266–280

    Article  Google Scholar 

  • Li L, Zhang BL, Cao M, Sun Y, Jiang JC, Hu PF, Shen Y, Wang LJ (2013) Facile synthesis of Cu2ZnSnS4 nanocrystals and its use for dye-sensitized solar cells applications. J Alloys Compd 551:24–29

    Article  Google Scholar 

  • Luque A, Hegedus S (2010) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, New York. ISBN 978-0-470-72169-8

    Book  Google Scholar 

  • Musu E, Cama J, Da Pelo S, Lattanzi P (2009) The reaction of enargite with alkaline NaClO solutions: an AFM and flow through study. Eur J Mineral 21:193–202

    Article  Google Scholar 

  • Rabaoui S, Dahman H, Ben Mansour N, El Mir L (2015) Structural, optical and electrical properties of Cu2SnS3 nanoparticles synthesized by simple solvothermal technique. J Mater Sci Mater Electron 26:1119–1124

    Article  Google Scholar 

  • Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131(34):12054–12055

    Article  Google Scholar 

  • Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  • Rusakov VS, Chistyakova NI, Burkovsky IA, Gapochka AM, Evstigneeva TL (2010) Mössbauer study of compounds of Cu3−xFexSnS4 and Cu2Fe1−xZnxSnS4 systems. Bull Russian Acad Sci Phys 74(3):389–393

    Article  Google Scholar 

  • Sainctavit Ph, Petiau J, Flank AM, Ringeissen J, Lewonczuk S (1989) XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2. Phys B Phys Condens Matter 158:623–624

    Article  Google Scholar 

  • Sasaki K, Takatsugi K, Ishikura K, Hirajima T (2010) Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy 100:144–151

    Article  Google Scholar 

  • Schorr S (2007) Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 515:5985–5991

    Article  Google Scholar 

  • Skinner BJ (1961) Unit-cell edges of natural and synthetic sphalerites. Am Miner 46:1399–1411

    Google Scholar 

  • Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22(20):E156–E159

    Article  Google Scholar 

  • Zalewski W, Bacewicz R, Antonowicz J, Pietnoczka A, Evstigneeva TL, Schorr S (2010) XAFS study of kesterite, kuramite and stannite type alloys. J Alloys Compd 492:35–38

    Article  Google Scholar 

Download references

Acknowledgments

The authors warmly acknowledge Luisa Poggi (Museo di Storia Naturale of the Università di Firenze, Italy), Piero Lattanzi and Stefania Da Pelo (Università di Cagliari) for kindly providing reference samples. Antonio De Luca, Silvano Bellandi and Nando Capolupo (Università di Firenze) are acknowledged for the technical support in samples synthesis and preparation. XAS data were performed at the BM08 “LISA” beamline (ESRF, Grenoble, France) during the Si-2345 experimental beamtime. ESRF is gratefully acknowledged for provision of synchrotron radiation and for provision of the technical infrastructure. Authors want to express their thanks to two anonymous reviewers, who provided useful comments to this manuscript.

Funding

This study benefited of funding by the Regione Toscana, under the ECOSOL project, and by Gabbrielli Technology srl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Benedetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Benedetto, F., Bencistà, I., D’Acapito, F. et al. Geomaterials related to photovoltaics: a nanostructured Fe-bearing kuramite, Cu3SnS4 . Phys Chem Minerals 43, 535–544 (2016). https://doi.org/10.1007/s00269-016-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0814-9

Keywords

Navigation